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Preface

In this dynamic hybrid 11th-grade mathematics textbook, I embrace the evolving world of education by
utilizing the CPA (Concrete, Pictorial, Abstract) Approach. This method starts with concrete examples that
students can touch and see, moves to pictorial representations like diagrams and drawings, and finally to
abstract concepts that use symbols and formulas. This step-by-step approach caters to diverse learning styles,
making mathematics accessible and engaging for everyone.

The book covers essential topics such as Complex Numbers & Polar Form, Matrices and Determinants,
Sequences and Series, Polynomial Division, Vectors in Space, Permutation and Combination, Mathematical
Induction and Binomial Theorem, Fundamentals of Trigonometry, and Trigonometric Functions. Each chapter
connects mathematical theories to real-life applications, transforming abstract concepts into vivid, relatable
experiences.

Our textbook encourages active learning through "Test Yourself" sections, classroom activities, and "Teacher's
Footnotes" to promote collaboration and critical thinking. Additionally, "Interesting Information" tabs provide
useful insights and connections between the concepts and their real-world applications, enhancing
understanding and relevance.

With a variety of examples, worksheets, video lectures, and simulations, we provide comprehensive practice
and deepen understanding. This textbook is designed to instigate a deep appreciation for mathematics, focusing
on practical applications and helping students see the relevance of math in everyday life. It also serves as the
best demonstration of SLO (Student Learning Outcomes) based exams, catering to all requirements and needs
for such assessments. It's more than an educational tool; it's a journey into the beauty and utility of mathematics
in the modern world.

The purpose of a skill is to apply

knowledge. Students and teachers
can scan the provided QR code to
access a worksheet that enhances
their understanding.
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The CPA approach, enhanced with
interactive images, makes
mathematics more accessible and
engaging, transforming abstract
concepts into tangible visuals for
deeper understanding and effective

Knowledge is information about a specific
topic that helps clarify concepts. Students and

learning.
teachers can scan the QR code provided with Detailed Solutions will be available in QR
the SLO Tab to access lectures related to that Code given at the start of Review Exercise of
topic. Every Chapter
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Salient Features

Comprehensive Learning
Engage students with videos, simulations, e
and practical worksheets. Ped Ouesin
Structured Lesson Plan i ‘
Well-organized with clear objectives,
PPTs, and a question bank. G
Engaging Multimedia S
Visual appeal through PPTs and interactive
simulations.

Assessment & Tracking

Diverse question bank and progress
monitoring.

Adaptable & Accessible

Scalable and accessible, suitable for all
learners.

SLONo: M- 11-A-12
Apply the operations with complex
numbers in polar form T

x= tan"%: 0.927(to 3 decimals)

So 3 + 4i can also be 5"

Example Write 3¢¢ in complex a+ bi form

Solution:

Skills Sheet

36 =3 [cosZ+isinZ
6 6

1.3.4 Products Of Complex Numbers In Polar

:3[@4”"%] Form
If z, =7(cos6, +isin0,) and
_ & . il z, =r,(cos0, +isind, ), then the product of these
2 2 numbers is given as:
Example Find the polar form of —4+4i 2z, =1 [ms(g‘ +0,)+isin(0, +0, )J
Solution:

. 2,2, = nirycis(6, +6,)
On the complex plane, this complex number would - - N

correspond to the point (—4,4) on a Cartesian plane.

img axis
We Can find the distance r and angle # as we did in o .
the Tast section 2,2,= 7 [cos (0,4 6,) +isin (6, +6,)]
P4y (-4 +(4) r=AB2=42 =

T _ 37 0,

4
To find @ we canuse =7 —tan™ i

U .
) e oot
as 0 lies in uadrant ,
Aﬁ N

E
r:4«/5, 9:% z=ré’ =42¢*

real axis

Notice that the product calls for multiplying the
moduli and adding the angles.

Example

Multiply 4(Cos 30°+iSin30" ) by 2(Cos 60"+ isin 60°)

§ —Interesting Information

Solution:

Let z, = 4(Cos30° +iSin30°)

. - . . . and z,= 2(Cos60” +iSin60")
Euler's theorem is crucial in securing online transactions. It

ensures that sensitive data, like credit card information, can  Then
be encrypted and decrypted securely between the buyer and
¢ encrypted and decrypted securely between the buyer an 22y = d 2[Cus(30"+60")+iSin(30"+60")J

the online store.
2,2, =8(Cos90° +iSin90" ) = 8¢is 90"

(i)
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lComplex Numbers and
Polar form

-

CHAPTER

Complex numbers are indispensable tools in the world of electrical circuits, especially when it comes to unraveling |
the behavior of capacitors within RC circuits. These numbers offer a unique perspective on the impedance of |
capacitors in circuits driven by alternating current (AC). Engineers rely on complex numbers to represent the |
combined resistance and reactance introduced by capacitors. This understanding is pivotal for designing circuits [

that filter, delay or modify AC signals. Whether it's optimizing the performance of audio equipment or designing | P |
electronic filters, complex numbers empower engineers to fine-tune the behavior of capacitors, ensuring efficient \
energy storage and signal processing.
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Chapter 1| Complex Number & Polar Form

Student Learning Outcomes

%
E

Recall complex number z = a +ib represented by an expression of the form (g,
b) or of the form i =V -1

Recognize a as a real part of z and b as an imaginary part of z.

Know the condition for equality of complex numbers.

Carry out basic operations on complex numbers

Define z = a — ib as the complex conjugate of z = a + ib

Define |zl=vVaZ+ b2 as the absolute value or modulus of a complex number z=
a+ib

Solve the simultaneous linear equations with complex coefficients. For
example,5z — 3 +D)w=7—-i;2—-i)z+2iw=—-1+1i

Write the polynomial p(z) as a product of linear factors. For example,

74 a’=(z+ia)(z—ia) 020 =322 4z45=(z+ 1) (z—2—i)(z— 2 +1)
Solve quadratic equation of the form 2pz + gz+ r by completing squares, where
p.q,rarereal numbers and z a complex number. For example, solve:
72=2z+5=0; (z—1-2i)(z—1+2)=0;z=1+2i,1-2i

Explain the polar coordinates system.

Describe the polar representation of a complex number.

Apply the operations with complex numbers in polar representation.
Demonstrate simple equations and in-equations involving complex numbers in
polar form.

Apply concepts of complex numbers to real world problems (such as
cryptography, wave phenomena, calculate voltage, current, circuits, the velocity
and pressure of the fluid).
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Knowledge /

@ Representation of Complex Numbers: Pre & Post Requisite
zrepresented as a + ib or (a,b), where a and b are real numbers and i = \/—_1 ; |

@) Understanding Real and Imaginary Parts: Class 9
Recognition of @ as the real part and b as the imaginary part of z. Chapter # 1

© Condition for Equality: Real Number System
Knowledge of the condition for the equality of complex numbers.

@ Complex Conjugate: I
Definition of the complex conjugate: z = a — ib as the complex conjugate of z = a + ib. Class 10

©) Absolute Value or Modulus: Chapter # 1
Definition of the absolute value or modulus of a complex number: |z|=Va? + b2 Complex Numbers

© Solving Simultaneous Linear Equations: -
Ability to solve simultaneous linear equations with complex coefficients. 1

@ Factoring Polynomials: Class 11
Writing polynomials as a product of linear factors, e.g.,z° +a’ = (z + ia) (z— ia) or Chapter # 1
z-3z tz+5=(E+1)(z-2-)@z-2+D) Complex Numbers

© Solving Quadratic Equations:
Solving quadratic equations of the form pz° + gz + r = 0 by completing squares, with p, g, r as
real numbers and z as a complex number.

©) Understanding Polar Coordinates:
Explanation of the polar coordinate system.

{0 Polar Representation of Complex Numbers:
Description of the polar representation of a complex number.

(® Operationsin Polar Form:
Application of operations (addition, subtraction, multiplication, division) with complex
numbers in polar representation.

® Application to Equations: Demonstration of equations involving complex numbers in polar
form.

{® Real-World Application: Application of complex number concepts to real-world problems,
such as cryptography, wave phenomena, electrical circuits, fluid dynamics, voltage, current,
velocity, pressure, etc.
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Skills

@) Understanding Complex Number Representation:

» Ability to recall and understand the representation of a complex number z as z= a+ib, where a and b are real numbers
and i =J—1

@) Recognition of Real and Imaginary Parts:

» Proficiency in identifying and differentiating @ as the real part and b as the imaginary part of a complex number z.

© Knowledge of Equality Conditions:

» Understanding the conditions necessary for the equality of complex numbers.

@) Performing Basic Operations on Complex Numbers:

p Skill in carrying out fundamental mathematical operations (addition, subtraction, multiplication, division) involving
complex numbers.

O Defining Complex Conjugate:

P Ability to define the complex conjugates (z=a—ib) as the conjugate of a complex number (z =a + ib).

® Understanding Absolute Value or Modulus:

» Skill in defining and calculating the absolute value or modulus (|z2|=y/a’ + b°) of a complex number z.

@ ) Solving Simultaneous Linear Equations with Complex Coefficients:

» Proficiency in solving sets of simultaneous linear equations involving complex coefficients.

©) Factoring Polynomials into Linear Factors:

» Skill in expressing polynomials as products of linear factors, enabling the representation of polynomial equations in
simpler forms.

© Solving Quadratic Equations using Completing the Square Method:

» Ability to solve quadratic equations of the form pz° + ¢z + = 0 by completing squares, where p, g, r are real numbers
and z is a complex number.

() Understanding Polar Representation:

» Interpret and demonstrate comprehension of the polar representation of complex numbers.

» Applying operations in polar form.

p Apply operations (+,—,%,+) with complex numbers proficiently in polar representation.

@ Application to Equations:

p Demonstration of equations & inequations involving complex numbers in polar form.

® Applying Concepts in Real-World Contexts:

» Apply complex number concepts practically to real-world scenarios such as cryptography, wave phenomena,
electrical circuits, fluid dynamics, etc



Introduction

|

Throughout our studies in mathematics and science,
you've encountered numerous concepts and problems
where real numbers were sufficient to find solutions.
However, as we dive deeper into mathematics and its
applications in fields like physics, aeronautical
engineering, and electrical engineering, a new set of
numbers called

"complex numbers" becomes

essential.

In real numbers the square of any number ‘n’ is
always positive. i.e, n>> 0.

Now, look at the following examples.
n+1=0,n*+9=0,n"+10=0
Consider the equation #*+1=0

has no solution among the real numbers.

—> (0

That’s why is we cannot find a real number which
satisfies equation (i).

Similarly, n”?+9=0

or n=-9 —>(ii)
has no solution and so on.

To resolve this issue, mathematicians introduced a
new number denoted by a Greek letter of alphabet i

(iota) such that i = J=1 which is called the
imaginary number. If we square both sides of the
equation, we have > =—1, a result that can never be
obtained with the real numbers. So, by the
definition.

i=vJ-1,2=-1

Using the above definition, we now have solutions
for the equations (i) and (ii) as follows:
2
n-=-1

n=+~—-1=+i and n*=-9,n=+ -9
=4 4/—1x9 =+ 3;

A simple consequence of the definition of 7 is that all
powers of i may be expressed in terms of = 1 and i
itself.

Complex Number & Polar Form [(@)iB:11159|

.1 . .2 .3 2. .
i=i, i"=-1, i"=ii=-i,

For example,
2
it = (1'2) =1 and if we continue in this way to obtain

higher powers of i, we obtain the values 1,7, —1 or

—I.

Patterns of i
Exponents
i V=1 i 59 13 17 21 25
i2 V=1 x+v—-1 -1 | 610 14 18 22 26
i? D=1 —i | 711 15 19 23 27
it (DD 1 8 12 16 20 24 28

Discovery

Once upon a time, imaginary numbers were just a wild
idea that many smart people thought was just too
strange to be true. René Descartes even called them
"imaginary" to show how odd he thought they were.
But then, brilliant minds like Euler and Gauss showed
everyone how these unusual numbers could solve
problems no one could solve before. This turned
imaginary numbers from a curious idea into a
superstar in math, changing the game in many fields!

&

Student Learning Qutcomes —@

< Recall complex number z represented by an
expression of the form z = a + ib or of the form (a,b)
where g and b are real numbers and i =v—1

< Recognize a as a real part of z and b as an
imaginary part of z.

< Know the condition for equality of complex
numbers

< Carryoutbasic operations on complex numbers
< Define z=a—ib as the complex conjugate of
z=a+ib

< Define  |z|l=Va? + b2

modulus of a complex number z=a +ib

as the absolute value or
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I Complex Numbers

z represented by an expression of the form z =a+ib

Since, the complex number is any number that can
be written as a+bi where a and b are real numbers.
The real number « is called the real part of

and the real number b is called the imaginary part

of a+bi.

For example, the complex number —4+ 5i has the
real part a= —4 and the imaginary part h=5.

Usually, the complex number a+ bi is denoted by z.
Accordingly,

z,=a,+bji, z,=a,+b,ji,z;=a,+bi....
The set of all complex numbers is denoted by C, that
is C= {a+bi |a,barereal numbers and J-1= i}

1.1.1 Complex Numbers as Ordered Pairs of
Real Numbers ( a as real part and b as
imaginary part of 7)

Complex numbers may also be defined as ordered
pairs of real numbers. Thus, a complex number z is
an ordered pair (a,b) of real numbers a and b, written

as z=(a, b)

The first component a is called the real part of z and
the second component b is called the imaginary part
The real part is denoted by Re(z) and imaginary part
is denoted by Im(z) respectively.

For Example Re(z)=a and Im(z)=b. The ordered
pair (0,1) only has the imaginary part and it is
denoted by i=(0,1),

The set of all ordered pairs of real numbers is the set
of complex numbers denoted by C, thatis C= {(a,b)

|a,barereal numbers} =Rx R where R is the set of
real numbers.

Note

9
Inx + yi, if y =0, then x + yi =x + 0i = x is a real

number. Thus, every real number x can be written
as a complex number by choosing y = 0.

Ifx=0andy#0, then x+ yi=0+yi=yiisknown
as pure imaginary number.

C: Complex Numbers

5++-15

P: Pure
Imaginary
Numbers

3+2i

R: Real
Numbers

Jis

-2

i ey

—2i

Figure 1.1

lustration of real numbers as a subset of complex numbers

1.1.2 Operations on Complex Numbers in Ordered
Pair Form

The equality and operations of addition, subtraction,
multiplication and division in the set of complex
numbers C are defined as follows.

(i) Equality:
(a.b)=(a,,b,) & a,=a,b=b,
(ii) Addition:
(a,,b,)+(a,,b,)=(a,+a,,b+b,)
(iii) Subtraction:

(al,bl) —(az,b2 )=(al —-a,,b, —bz)
(iv) Multiplication:

(a] ,b, )(az,bz)z(a]a2 —bb,,ab,+ba,)
(v) Scalar Multiplication:
k (a, b) = (ka, kb) for any real number £.
(vi) Division:

(a,b) _ ( aa,+bb, ba,—ab,
(a,,b,) a +b; a +b;

} (ay,b,) # (0,0)



The set of all complex numbers (a, b) in which the
second component is zero has all the properties of
set of “real numbers”. For example, addition and
multiplication of (a1,0) and (a2,0) give

(al,O) +(a2,0)=(a1+a2,0) by (ii)
(al,O)(az,O):(alaz,O) by (iv)
which are numbers of the same type with imaginary
part equal to zero. So, we can write a = (a, 0).
Now considering, j = (0, 1),
we have

i‘= i.i=(0,1)(0,1)=( —1,0)= -1 ~va=(a,0)
that is,i* = —1. Now, we are in a position to express

every complex number z as an ordered pair in terms
of i as follows;

z=(a,b)=(a,0)+(0,b) by (ii)
=(a,0)+(5,0)(0,1) by (iv)
=a+bi (va=(a,0)andi=(0,1)

that is z=(a,b)za+bi

We see that an ordered pair (a,b) is expressible in
the usual form of complex number as a + bi. Thus
the two notations for a complex numbers z can be
used interchangeably.

Example@ Write the following in form of

ordered pair.

@i 7 (i) 3 (iii) 0
(iv) % v) 3-+-16 (vi) 1.
Solution:

()7 =7+0i = (7,0)
(iii) 0=0+0i = (0,0)

(i) 3 =0+3i =(0,3)

I 1 1
V) —=— +0i = |—.0
(1V)2 7 i (2 j

(V)3 -+-16=3-i16 =3 -4i=(3,-4)
(vi) 1 =1+0i=(1, 0)

Complex Number & Polar Form [(@)iB:11159|

< 1In (iii) of example 1.1,we see that 0 can be expressed
as a sum of real and imaginary number and hence is
a complex number. Such a complex number
whose real and imaginary parts are zero is called
zero complex number.

<> Similarly, in (vi) of example 1.1, 1 can be expressed
as a complex number with real part 1 and
imaginary part 0. The complex number 1 is known
as the unity in complex number.

1.1.3 Condition for equality of Complex
Numbers:

If z1 = a1 + bi and z2 = ax+ bai are two complex
numbers, then

a1 +bii=ax+ b

< (a1t bii) — (a2 + bi) =0
S(@—a)+ (b —b)i=0

< (a1—a2)=0and (b1 — b2)=0

S ar=aand by = b

thatis |a,+ bi = a,+ bi<>a = a, and b = b,

“Two Complex numbers are said to be equal if their
real and imaginary parts are equal to each other”

Example@ If a, b are real numbers and

7a+i(3a—b)=14-6i, then find the values of a and
b.

Solution:

Given, 7a+i(3a—b)=l4—6i

= Ta+i(3a-b)=14+i(-6)

Now equating real and imaginary parts on both
sides, we have

7a=14 and 3a-b=-6

= a=2 and 3(2) —b=—-6

= a=2 and 6 -b=-6

= a=2 and -b=-12

= a=2 and b=12

Therefore, the value of a=2 and the value of »=12.
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Example@ For what real values of m and »
are the complex numbers m*~7m+9ni and
n’i+20i—12 are equal.

Solution:

Given complex numbers are m” —7m+9ni and
n’i+20i—12

According to the problem,

m* —Tm+9ni =n’i+ 20i —12

= (m2 —7m)+i(9n):(—12)+i(n2 + 20)

Now equating real and imaginary parts on both
sides, we have

m’ —Tm=-12 and 9n=n’+20

= m*~Tm+12=0 and n° —9n+20=0

= (m-4)(m-3)=0and (n—5)(n-4)=0
> m=4,3and n=75,4

Hence, the required values of m and n are follows:

m=4,n=5;m=4,n=4);(m=3,n=5);(m= ng

3,n=4).

1.1.4 Basic Algebraic Operations on Complex
Numbers

Let z1= a1 + bii and zo = ¢ + b»1 be two complex
numbers. Then their,

(i) Addition:

z+ z,=(a,+bi)+(a, +bi)=(a,+b,)+(b +b,)i

(ii) Subtraction:

Z,— 2, z(a1 —b]i)—(az—bzi)z(a1 —az)—(b] —bz)i

Example Perform the indicated operation in
each of the following.

i) (8—51) +(5+ 6i) (i) i — (6 - 9i).
Solution:
AD@B-5)+(5+6)=@8+5)+(-5+6)i=13+i
(i) i —(6-9)=0-6)+(1—-(-9)i=-6+10i

(iii)  Multiplication:
z1z2= (a; + bii) (ax + bi)
= ay (a>+ bsi) + bji(a: + bsi)
= ajaz + aibi + biazi + bibai’
= ajaz + aibyi + bjazi— b;b;
= (ajaz— biby)+ (aib; + biaz)i
that is

z,z, z(a] +b1i)(a2 +b2i) z(ala2 —b1b2)+(a1b2 +b1a2)i

and for scalar multiplication

kz, = k(a, +bji) = ka, + kbi forany realnumber .

Example@ Multiply (2+3i)(4+7i).
Solution:
(2+430)(4+7i)=(2)(4)+(2)(7i)+(4)(3i)+(3i)(7i)
=8+14i+12i+21(—1)

=(8 —21)+(14+12)i

=—13+26i.

Note
When performing operations with square

roots of negative numbers, begin by expressing all
square roots in terms of i. Then perform the

indicated operation.

Incorrect:

e

Correct:

V=254 =i25 xiJ 4 =5ix 2i =107

=10(-1)=-10

(iv) Division of Complex Numbers:

Division

The division of one complex number by another
complex number cannot be carried out, because the
denominator consists of two independent terms. This
difficulty can be overcome by multiplying the
numerator and denominator by the conjugate of the



complex number in the denominator. This process is
known as rationalization.

z _ a+bi
,  a,+b

We have

Z

_ atbi " a,—b,i

. (by rationalization)
a,+b,i

a,—b,i

_ (al + bli) % (Cl2 _bzi)
(a,+b,i) (a,—b,i)

_ (aya, +bb,)—(ab, —ba,)i
a; +b;

_ (a,a,+bb,)—(ab,—ba,)i
a22 + b22

_aa,+ bb, ba,—ab, .
2 2 2 2 1
a, +b; a, +b;

z _ 4 +bi aa,+bb, N ba,—ab, ;

Thus -=—— —
a,+bj  a;+b; a, +b,

V4

2

Example Write §+2

3+5i
3+5

in the form a + bi.

1
1

2+ 3i
3-5i

X

Solution:
(2+30)(3+50)
(3-5i)(3+5i)

6+10i +9i +15(i)°
9+15i—15i —25(i)

6+19i+15(~1)
9-25(-1)

-9+19i 9 19.
=——+—1i
34 34 34
1.1.5 Conjugate of a Complex Number
The conjugate of the complex number a+bi 1s a —bi
and a —bi is a+bi. We denote the conjugate of any

complex number z as z is obtained by changing the

sign of the imaginary part of z.
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Thus, Conjugate of z=a+ bi is 7 =a— bi
Multiplying a + bi by its conjugate we find
(a+bi)(af bi)=az+b2+0i=az+b2 .

Thus, a complex number times its conjugate is
always real. i.e., its imaginary part is zero.

Example@ Find the conjugate of (i) —4 —5i and
(i) 6+9i.
z=—4-5i

Solution: (i)
z =-4+5i

1.1.6 Graphical Representation of Complex
Numbers

We can represent complex numbers in the
complex plane. For this purpose, we use horizontal
axis and vertical axis. Every point in the plane may be
associated with just one complex number. Thus, there
is (1-1) correspondence between the infinite set of
complex numbers and the points of the plane.

In this representation of z, the real part of z is taken
along x-axis of the plane and the imaginary part of
z is taken along y-axis of the plane (figure 1.2). The
x-axis and y-axis are referred as to real axis and
imaginary axis respectively.

i
A
(a,b)
atbi
b
x! 5 i P x
yl
Figure 1.2

Example Represent the following complex
numbers on the complex plane.

(a)-2 + 3i(b)4-5i(c)- 2 + 3i (d)- 8- 2i
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Solution: In figure 1.3, all the above complex Examol e

numbers have been represented. We see that the -

complex numbers appear in all the four quadrants Compute the absolute value of the following
due to the negative and positive signs with theirreal  complex numbers:

and imaginary parts. (i) 2i (i) 4 (iii) 3-6i

Solution:
(1) Letz =2ior z =0 + 2i
Then by the definition

2| = (0 +(2) =v22 =2

(i) Letz = 4o0or z = 4 + 0i.

Figure 1.3 Then by the definition
1.1.7 Absolute value or Modulus of a Complex |z|= /(4)2 +(0) = \/4_22 4

Number

Letz = (a,b) = a+ bi be a complex number. (iif) Letz = 3 - 61.

Then absolute value or modulus of z, denoted by Then by the definition

|z|, is defined by |2 =(3)* +(=6)* =\/9+36 =45 =35
|Z| =\a*+b’

In the figure 1.4 ,Point P represents a + bi. E isa |

4 —Interesting Information

perpendicular drawn on x-axis.

Thus,O_Q= a and @ = b. In the right angled—
triangle OQP, we have, by Pythagoras theorem

o7 [ogf 7] - -+
‘O_P‘ =\a’+b* = |Z|

Therefore, the modulus of a complex number is the
distance from the origin of the point representing the
number.

Did you know that in communications, complex
numbers help make sure our phone calls and internet
work well? When signals are sent through the air or
y wires, they can be thought of as complex numbers. The

| .
»

absolute value of these numbers tells us how strong the
signals are. By checking this strength, engineers can
| figure out if the signals are clear or if there's a problem.
b This helps make sure that when you call a friend or
: watch a video online, the sound and picture come

iiindir — Q > through smoothly without interruptions. |

Figure 1.4
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@— Skill 1.1
Understanding Complex Number Representation:
Ability to recall and understand the representation of a complex number z as z= a+ib, where a and b are real numbers and
i=\-1
Recognition of Real and Imaginary Parts:
Proficiency in identifying and differentiating a as the real part and b as the imaginary part of a complex number z.
Knowledge of Equality Conditions:
Understanding the conditions necessary for the equality of complex numbers.
Performing Basic Operations on Complex Numbers:
Skill in carrying out fundamental mathematical operations (addition, subtraction, multiplication, division) involving
complex numbers.
Defining Complex Conjugate:
Ability to define the complex conjugates (z = a—ib) as the conjugate of a complex number (z = a + ib).
Understanding Absolute Value or Modulus:
Skill in defining and calculating the absolute value or modulus (zI=y/a’ + b°) of a complex number z.

B ——— Exercise 1.1 —«n

1. Simplify and write the complex number as i,—i, —1 and 1

i —i* i) Gii) i Gv) ° v i’

2. Add the following complex numbers.

2 4 57 4 4’5

(i) 4(2+3i),-3(1-2i) (ii) %—%i,l—li (i) (+3,1),(1,33)  (iv) [i £J££ f]

3. Subtract the following complex numbers.
(i) 232 -57i from 5v2-97i (i) (—7,%jfrom (7%]

(iii) (x,O) from (3,—y) (iv) 2x —3yifrom4x —7yi
4. Multiply the following complex numbers:
(i) (8i+11)(=7+5i) (i) (5i)(1-2i) (i) (9 -12i)(15i+7)
5. Perform the division and write the answer in the form a + bi.
4+ 1 1 6+i

i i) —— iv) —
3+5i W) —8+i () 7-3i ) i

@

6. Prove that the sum as well as product of complex numbers and its conjugate is a real number.

7. Write each expression as a complex number in the form z=a+ bi.

() (1-i)-2(4+i) i) (1-i) (i) (24)(8) (iv) (—6i)(-5i)’
8. Find the indicated absolute value of each complex number.
(i) |3+4il (i) [8-5il

9.1f z,=3+2i and z,=4+5i, then evaluate.

(i) |z,+2z,) (i) |z -z (iii) |z z,| (iv) =
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10. Simplify and write your answer separately into real and imaginary parts.

. 2430 v (14+20) veer 1=
O 55 W 5 Wy

11.Show that z.z is a real number.

12.Show that z=Z iff z 1s real.
13. Find the values of “a” & “b”

(i) 6a+i(4a—b)=12+3i (ii) 8a+i(5a—b)=16-7i

(i) 3a+i(a—b)=6+2i (iv) 4a+i(3a—b)=8-5i

14. Find the values of “m” & “n”

(i) m* —2m+11ni =10—n’i+14i (ii) m* —9m+8ni=n’i+18i—7
(iii) m* —4m+10ni =8 —n’i + 6i (iv) m* =3m+Tni=n*i+15i-5

v

Student Learning Qutcomes —@

< Solve the simultaneous linear equations with complex coefficients. For example,
52— 3+i)w=7—-1;2—-i)z+2iw=—-1+1i
< Write the polynomial p(Zz) as a product of linear factors. For example,

z>+ a’=(z+ia)(z—ia) 123 =322 +z+5=(z+ 1) (z—2—i)Nz—2+1i)

<> Solve quadratic equation of the form 2pz + gz+ r by completing squares, where p,q,r are real numbers and z a
complex number. For example, solve:

72=2z+5=0; (z—1-20)(z—1+2))=0;z=1+2i,1-2i

| WA Solution of equations

To find the solution of different equations in
complex variables either with real or complex co-
efficient, we use some techniques which we used to

§ —Interesting Information
find the solution of simultaneous linear equations.

1.2.1 Solution of Simultaneous Linear
Equations with Complex Co-efficients

Consider the following equation

- mw=n — () Solving equations with complex variables is essential in

aerodynamics for designing aircraft wings. Engineers

where, m and n are complex numbers. The use complex potential flow theory to predict lift and drag

equation (i) is called a linear equation in two forces, optimizing wing shape for performance and

complex variables (or unknown) z and w. efficiency. This ensures safe and efficient air travel,
advancing aviation technology and passenger safety.



z+mw=n,

zZ +m,w=n, — (@)
These two equations together form a system of linear
equations in two variables z and w.

The linear equations in two variables are also known
as simultaneous linear equations.

For example

Sz—(3+i)w="T7-i
—> (iii)
(2-i)z+2iw=—1+i
is a system of linear equations with complex co—
efficients.

Thesolution of a system in two variables z and w isan
ordered pair (z, w) such that both the equations in the

system are satisfied. For example, consider system
(iii).
The ordered pair (z, w) where z=1+i and w=2iis

a solution of (iii) because if we replace z by 1+i and
w by 2i, then both the equations are satisfied. The
process of finding all solutions of the system of
equations is known as solving the system.

Here, we shall find solution of a system of two
equations with complex co-efficients in two variables
z and w. The simple rule for solving such system of
equations is the “Method of Elimination and
Substitution”.

(i) If necessary, multiply each equation by a
constant so that the co-efficient of one
variable in equation is the same.

(ii) Add or subtract the resulting equations to
eliminate one variable, thus getting an
equation in one variable.

(iii)  Solve the equation in one variable obtained in
step-2.

(iv)  Put the known value of one variable in either

of the original equation in step-1 and solve for
the other variable.
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(v)  Writing together the corresponding values of
the variables in the form of ordered pairs
gives solution of the system.

Example Solve the simultaneous linear

equations with complex co-efficients.
5z —(3+i)w=T7—i
(2 —i)z+2iw=—1+i

Solution: Since,

5z (3+i)w=T7—i —> ()

(2 —i)z+2iw=—1+i —> (ii)
Multiplying equation (i) by (2 - i) we have

5(2 i)z —(3+i)(2 —i)w=(7 —i)(2 —i)
=5(2 —i)z —(6 —3i+2i —i*) w=14 —7i —2i+i2
=5(2 i)z (6 —i+1)w=14 -9i —-1(i2=-1)
=5(2-i)z 7 -i)w=13-9i ——> (iii)
Multiplying equation (ii) by 5, we have

5(2—i)z+10iw= —5+5i —> (iv)

Subtracting equation (iii) from equation (iv), we
have

5(2 —i)z+10iw=—5+5i

—5(2-i)zF(7 —i)w=-13F9i

10iw+(7 —i)w=—18+14i

=(7+9i)w=—18+14i

—18+ 14i
Sw=s———
7+ 9i
—18+ 14i 7-9i . oy
=>w= X (by rationalization)
7+ 9  7-9i
e 260i _ 2
130

By putting the value of w in (i), we have

5z —(3+i)(2i)=7-i




Chapter 1| Complex Number & Polar Form

= 5z —(6i+2i2)=7 i
= 5z —(6i —2)=7—i
= 5z=7 —i+6i -2

= 5z=5+5i

5+ 5i_

= z 1+

Thus, z=1+i and w=2i is the solution of the

simultaneous linear equations.

1.2.2 Expressing Polynomial P(z) as a Product of
Linear Factors

We are concerned with finding the linear
factors of the following two types of
polynomials.

(i) P(z) =z’ +a’,where a is a real number.

(ii) P(Z) =az’ +bz’ +cz+d where a, b, c and d
are real numbers respectively.

In factorizing polynomials of type (i) we

simply use the fact that i*= —1 in order to
find linear factors.

For example,
P( z)zz2 +a’=z7 -i'd’ =(z+ia)(z —ia) .
However, in factorizing polynomials of type

(i1), we use the factor theorem which has
already been proved in our previous classes.

The factor theorem: Let P(x) be any polynomial
Then x —a is a factor of P(x) if and only if

P( a)= 0

The method for factorizing the polynomials of type

(i1) into linear factors is explained through the
following example.

Example @ Factorize the polynomial

P(z)=z3 +52*+32z —41 into linear factors.

Solution: In factorizing the given polynomial P(z)

into linear factors, we use the factor theorem. To do
50, we note that z=1 is a root of P(z), since

P(1)=(1) +7(1)"+33(1) -41
=1+7+33 -4 =0p

By factor theorem z —1 is a factor of P(z). We

therefore arrange the terms in such a way that we
can find a common factor z —1 as follows:

P(z)=z"+72"+33z -41

=(2* —1)+(72"+332 -40)
=(z-1)(2*+z+1)+(72" —7z+40z -40)
@' —b’=(a—b)(a’+ab+b’)

z -1)(2* +z+1)+(72* ~7z)+(40z —40)

P4 z+1)+7z(z —1)+40(z -1)

—_ —_ —_ /L —_ —_
N
L

~— ~— ~— ~— ~— ~—
~—
—1
—_—
N
8]
+
N
+
—_
SN—
+
\1
N
+
N
(o)
L1

z-1 (zz+82+16)+25}

(
(
[
(
(2 +82z+16+25)
[
[

~(z 1) (+4)" (5i)'|

=(z —1)[(z+4)+5i][(z+4) —51‘]

=(z -1)(z+4+5i)(z+4 -5i)

1.2.3 Solve quadratic equation of the form
pz’+ qz+ r=0 by completing square,

where p, ¢ and r are real numbers and z is
a complex number

Consider the quadratic equation of the form

pzz+qz+r:O —>(1)



where p,q,r are real numbers; p#0 and z is a

complex variable.

We see that z> —2z+5=0, 2z° —-8z+5=0 and

z*=0 are all examples of quadratic equation in the
variable z.

Solution of Quadratic Equations

All those values of z for which the given equation is
true are known as the solutions or roots of the
equation, and the set of all solutions is known as the
solution set.

For example, z*+9=00rz" —(31’)2 =0 is true only

for z=3i or z=-3i, hence z=3; and z=-3i are

the solutions or roots of the given quadratic equation

and { 3;,-3;} is the solution set.

To find the solutions of equations of the form (i), we

use a method known as “Completing the Square”
which is described as follows:

(i) Write the quadratic equation in its standard
form.

(ii) Divide both sides of the equation by the co—
efficient of z?2 if it is other than 1.

(iii) Shift the constant term to the right-hand side
of the equation.

(iv)Add a number which is the square of half of
the coefficient of z to both sides of the
equation.

(iv) Write the left hand side of the equation as a
perfect square and simplify the right hand
side.

(v) Take square root of both sides of the equation
and solve the resulting equation to find the
solutions of the equation.

Example @ Solve the quadratic equation.
9z° +z+27=0
Solution: Since,

927 +2z+27=0 —— (i)

Divide equation (i) by 9.
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22+lz+3=0
9

( 1 j 971
Z+— | =——
18 324

Taking square root on both sides

BRI
18 18

15971
18

Thus the solution , of the given equation is

-1£/971i

and the solution set is

{—1+\/971i _1- 9711}
18 '

18

— Skill 1.2

Solving Simultaneous Linear Equations
with Complex Coefficients:

Proficiency in solving sets of simultaneous
linear equations involving complex coefficients

Factoring Polynomials into Linear Factors:
Skill in expressing polynomials as products of
linear factors, enabling the representation of
polynomial equations in simpler forms.
Solving Quadratic Equations using
Completing the Square Method:

Ability to solve quadratic equations of the
form pz* + gz + r = 0 by completing squares,
where p, g, r are real numbers and z is a
complex number.
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B ——— Exercise 1.2——— 1

1. Solve the simultaneous linear equations with
complex co-efficients.

(i) z+2w=4 ; 2z+5w=3

(i) 2z -w=3i+5 ; z+3w=12 —-4i
(iii) 2z+(3+i)w=13i ; (3-i)z —2w=2i
(iv) 3z+w=3+2i 5z—w=11+3i

2. Find solutions to the following equations.
(i) z°+z+3=0 (i) z* 1=z
(iii) z° —2z+i=0 (iv) z'+4=0
3. Find solutions to the following equations.

i z’=1

(i) (z-1)'=-1

(i) z'=8
(iv) z'+z°+1=0

4. Find the roots of the polynomial p(z)=z* —2z+2

and use this to Factor the polynomial. Verify the
factorization by expanding it.

5. Show that 1+i, 1—i and 2 are roots of the
polynomial p(z)=z3 —4z*+6z —4 and use this to
factor the polynomial z* —8(1—i)z+63 —16i=0.

6. Solve the given quadratic equation and write the
solutions in the form z=a+bi .

(i) z*+2z+2=0 (i) 62> —5z+5=0

(iii) 2z°+z+3=0 (iv) 3z°4+2z+4=0

7. Show that each z,=—1+i and z,=—1—i does not

satisfy the equation z°+2z+1=0

8. Determine whether 1+ 2i is a solution of
z2 -2z+5 =0.

/4

Student Learning Outcomes —@

< Explain the polar coordinates system

< Describe the polar representation of a complex
number

<> Apply the operations with complex numbers in
polar representation

< Demonstrate simple equations and in-equations
involving complex numbers in polar form.

Argand Plane and Polar

IR Representation

We already know that corresponding to each ordered
pair of real numbers (x,y), we get a unique point in

the xy-plane and vice-versa with reference to a set of
mutually perpendicular lines known as the x-axis and
the y-axis. The complex number x+ iy which

corresponds to the ordered pair (x,y) can be

represented geometrically as the unique point
P(x, y) in the xy-plane and vice-versa.

The plane having a complex number assigned to
each of its point is called the complex plane or the
Argand plane.

Obviously, in the Argand plane, the modulus of the
complex number |z| =r=+/x"+ " is the distance
between the point P(x, y) and the origin O (0, 0) as

shown in the figure 1.5.

y
; P
(X% (x.y)
iy
X' < 0 > X
(0,0)
yl
Figure 1.5

The points on the x-axis corresponds to the complex
numbers of the form a+0i and the points on the y-



axis corresponds to the complex numbers of the form
0+ib.

The x-axis and y-axis in the Argand plane are called
the real axis and the imaginary axis, respectively.

The representation of a complex number z=x+iy

and its conjugate z=x —iy in the Argand plane are,

the points P(x,y) and Q(x, —y),respectively.

Geometrically, the point (x, - y) is the mirror image
(Conjugate) of the point (x, y) on the real axis as

shown in figure 1.6.

A Pew
x'¢ >X
(0]
v O(x,~y)
Yy
Figure 1.6

1.3.1 Polar representation of a complex number
Let point P represent the non-zero complex

number z=x+iy . Let the directed line segment OP
be of length » and @ be the angle which OP makes

with the positive direction of x-axis as shown in
figure 1.7.

A
P
//\/\,\ (2)
<
x'€ o > x
0
4
yl
Figure 1.7

We may note that the point P is uniquely determined
by the ordered pair of real numbers (7,6), called the

polar coordinates of the point P. We consider the
origin as the pole and the positive direction of the x
axis as the initial line.
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Let us understand the relation between rectangular
and polar coordinates with a little derivation

(figure 1.8).

imaginary
P(x )
Y
9 Real
Of x 0
Figure 1.8

From the figure observe the right-angle triangle
OQP. From there we get

cos(@) X, x= rcos(@)

r
sin(é’) =2, y= rsin(@)
r
tan(@):la x+yi=r
X
O=tan™ 2
X

With this in mind we can write z=r(c0s9+isim9).

The latter is said to be the polar form of the complex
number.

Here, r = /x> + y* =|z| is the modulus of z and 6 is

called the argument (or amplitude) of z which is
denoted by arg z.

The argument of z is denoted by 0, which is measured
in radians. However, there is an ambiguity in
definition of the argument. The problem is that
sin(¢9+ 27r)=sin¢9 ,cos(t9+ 27r)=cos6’ , since the

sine and the cosine are periodic functions of 0 with
period 2m. Thus 6 is defined only up to an additive
integer multiple of 2m. It is common practice to
establish a convention in which 8 is defined to lie
within an interval of length 27 . The most common
convention, which we adopt , is to take —7<@ <.
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Principal arg (z): The argument € which satisfies the
inequality —7 <@ <7 is known as the principal

argument of z . This is denoted by Pr. arg (z ) or Arg
(z). In light of previous discussions it is tempting to

identify arg z with arctan( ) However, the real
X

function arctan x is a multi-valued function for real
values of x. It is conventional to introduce a single-
valued real arctangent function, called the principal
value of the arctangent, which is denoted by Arctan

x and satisfies —%T[ < arctan x < %T[. Since —m <
arg z < m, it follows that arg z cannot be identified
with arctan (%) in all regions of the complex plane.

The correct relation between these two quantities is
easily ascertained by considering the four quadrants
of the complex plane separately illustrated in the

figure 1.9 below:
(1) (11)

F

(111) (IV)

Figure 1.9

Rule to find Arg (z) (Principal value) :

Let z:a+ib:(a,b) & tan™'|—
a

=0 . Then

o

Arg(z)=tan™ (éj always gives the principal valu
a

It depends upon the quadrant in which the point (a,
b) lies

a. Arg(z) =tan"' u
a

when z lies in 1** Quadrant

1 | —

b.Arg(z)=n—tan” , when z lies in 2" Quadrant

c. Arg(z)=tan™' b — 7 lies in 3™ Quadrant
a

d. Arg(z)=—tan™'|=| or2m —tan™' |=| when z lies in 4%
a
Quadrant

y

T—0 6

X' < > X

6—m | —6
yV

Figure 1.10

Principle value of z w.r.t quadrants

Properties of Arg(z):

i. Arg (any +ve real no.) =0
ii. Arg (any-verealno.)=rn
jii. Arg(z—f)zi%

iv. Arg (z1.22) = Arg (z,) + Arg (z,)

v At (—j Are (2) - Arg(z,)
Are(2)=-re (2)= are 1)

Arg (z)+ Are (7)=0

Example @ Represent the complex number

z=1++/3i in the polar form.

Solution
_ /x2+y2

we get

r=+/4 =2 (conventionally, r >0) gives



9=tanl[£}=9=z

3

Therefore, required polar form is

T .. T
z=2| cos—+isin—
( 3 3j

Im

-2

-2 -1 0 1 2

Example Express the complex number 4i

using polar coordinates.

Solution:

On the complex plane, the number 4i is a distance of

4 from the origin at an angle of % ,
50 4i= 4 cos = +idsin—
2 2

Note that the real part of this complex number is 0.

Im

4 1

-2

-4 2 0 2 4

Example @ Convert the complex number

-16
1+i\/§

Solution:

polar form.

The given complex number

Complex Number & Polar Form
-16  -16 1-i/3
1+i\/§:1+i\/§x1—i\/§
_—16(1—iﬁ)_—16(1—iﬁ)
C1-G3)? 143
=—4(1-i3)=-4+i43

Let 4= rcos<9,4\/§ =rsind
By squaring and adding, we get
16+48=1r° (cos29 + sin29)

which gives

~
I
ee)

o[ &

Hence cosf = —%,sin@ =

0=rm—tan"' |2
X
V3
O=rx—tan™" %
2
0=7r—£=2—7r
3 3

X+ yi=rcos@+irsin@

Thus, the required polar form is 8(003 2?71- + isin 2%}

1.3.2 De Moivre's theorem

De Moivre's Theorem is a fundamental concept in
mathematics that offers a method for raising complex
numbers to a power using trigonometry.

The Derivation and Working of De Moivre’s
Theorem can be understandable by a simple example

2
) T .. T
z"=| cos—+isin—
( 3 3j

T o, .,T . T . T
zt = coszg +i%sin® =+ 2i cosgsmg

T ..t (.. ®m =«
z* =cos’ = —sin* = +i| 2sin=cos=
3 3 3 3
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~Trigonometric Identities
cos2a =cos’ a—sin’ a

sin2a = 2sina cosa

) 2 .. 2w .
z°=cos—+isin— in
3 3

z=(r,e)=(1,§j
zzz(r2,20)=(1,23—”j

Remember that any complex number z=x+ yi can

be written in the form of an ordered pair ( r,H)

where r=+/x’+3> and 0 =tan"' 2 If

X
z=x+yi=rcosf+irsind
z° =(rc050+irsinc9)2
z’ = rz(cos2 0 —sin” 0 + i2cos¢9sin9)
2 =r*(cos20+isin26)
Now, we can conclude that z" = r" (cos n6+isin n9)

in (r,@) can be represented as (r”,n@) and

De Moivre’s Theorem states that this is true forany
rational number “ n "

De Moivre’s
An important theorem in complex numbers is named
after the French mathematician, Abraham De Moivre
(1667-1754). Although born in France, he came to
England where he made the acquaintance of Newton
and Halley and became a private teacher of

Mathematics. He never obtained the university position
he sought but he did produce a considerable amount of
research, including his work on complex numbers.

1.3.3 Euler’s Theorem

The Euler form of complex numbers is a way to
represent complex numbers using trigonometric
functions. It's a useful and compact representation
that involves the exponential function and imaginary
unit. The Euler form is expressed as:

z=r-€"

The relationship between the Cartesian form of a
complex number (g + ;) and the Euler form is given

by:
z=a+bi=r- (cos(9)+i- sin(é’)) =r-e’
This form is closely related to De Moivre's theorem,

which states that for any complex number z=r-¢e",
raising it to a power n yields:

This form provides an elegant and efficient way to
manipulate complex numbers and perform various
operations, especially involving powers and roots.

Example Write these polar coordinates in

rectangular coordinates also express them in Euler’s

notation » =1, 8 = %

Solution:
e’ =cosO+ isind

i T .. T
e’ =cos—+ isin—

vy

4 —Interesting Information

Polar graphs

Representing data and functions that have a

natural circular symmetry, such as the patterns of
wind direction or the orbits of celestial bodies. |

Example @ Write the complex number 3 + 4/ in

Euler’s form.
Solution:

To turn 3 + 4i into re™ form,we do a Cartesian to
Polar conversion:

F=3+4 =\0+16=25=5



x=tan" g =0.927 (to 3 decimals)

So 3 + 4j can also be 5¢"%*"

Example Write 3¢ in complex a+ bi form

Solution:

3egi =3 {cos£+ isinE }
6 6

331

Example Find the polar form of —4+4i

Solution:
On the complex plane, this complex number would
correspond to the point (—4,4) on a Cartesian plane.

We Can find the distance r and angle 6 as we did in
the last section

P=x’+y =(—4)2+(4)2 r=+32=4J2

4 T 3r
— = ——=—
4 4 4

To find  we canuse § =7 —tan™'

as 6 lies in 2™ Quadrant

3m.
r=4/2, Hz%r z=re” =42¢*

4 —Interesting Information

Euler's theorem is crucial in securing online
transactions. It ensures that sensitive data, like credit
card information, can be encrypted and decrypted

securely between the buyer and the online store. |
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A

in_ .
o_;
. €
!

im=1

3 . e 21 =1
3 ]

1.3.4 Products Of Complex Numbers In Polar
Form

If z, =1r(cosb, +isin6,) and

z, =1,(cos0, + isind, ), then the product of these
numbers is given as:

Z,Z, = I, [cos(@1 +0, ) + isin(@l +0, )]

z,z, = rirycis(6, +6,)

im‘% axis

z,.z,=7r [cos (0,+ 0,) +isin (0, + 0,)]

lz\= r

» real axis

Notice that the product calls for multiplying the
moduli and adding the angles.

Example

Multiply 4(Cos30°+iSin30° ) by 2(Cos 60°+isin 60°)
Solution:

Let z, = 4(Cos30° +iSin30° )

and z, =2(Cos60° +iSin60")

Then

2.2, = 4x 2| Cos(30° +60°) +iSin(30° +60°) |

z,. 2, =8( Cos90° +iSin90° ) = 8cis 90°
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| OI Note

The term "cisf" is a shorthand notation in mathematics

representing the complex number expression

cos(0)+isin(0). This notation simplifies the handling of 8cis540° 1 .1
complex numbers, particularly in operations like So 2cis225° 4 ﬁ_ lﬁ
multiplication, division, and exponentiation, by
encapsulating trigonometric functions. Originating
from the combination of the words cosine and sine, Applications of Polar Coordinates:

"cis" is heavily used in fields such as electrical

engineering and physics to streamline calculations and Polar coordinates play a significant role in daily life
reduce formula complexity. This notation is directly across various fields. They are integral to navigation
related to Euler's formula, which links exponential through GPS systems, architectural design for circular

functions with trigonometric functions in the complex \ structures, and radar technology for tracking moving

plane. objects. Meteorologists use polar coordinates for
weather analysis, while astronomers apply them to
locate celestial bodies. Surveyors employ them for
land mapping, artists create radial patterns, and
If z = r,(cosﬁl +iSin01) and mechanical engineers analyze rotating machinery.
Even in culinary arts, polar coordinates help divide
circular objects evenly. In diverse contexts, polar

1.3.5 Division of Complex Numbers In Polar
Form

z, =1,(cosb, +isinb, ), then the quotient of these

numbers is given as: coordinates provide a valuable framework for
describing and solving problems involving angles,

A i[cos(@l —0,)+isin(6, -0, )] distances, and radial patterns.

Z h

i=£cis(91 —92)

Z, h

Img axis
A

z= ’;fl(cos[ez— 0,1+ isin [6,— 6,1

0,
@0 6, 0. 8, » Real axis
Example @ Solve Beis>40°
2cis225°
Solution:
SO geis(540° - 2257)
2cis225 Example @ Find the quotient of 1+ J3i and 1+i
= 4 cis(315°)
Solution: We first write each of them in polar form.
= 4(Cos315° +iSin315°) Let
Since Cos31s =L and Sim315° — L z, =143 and z,=1+i

NGl

S



h

=J1+3=2

and r2:\/1+1:\/5

0, = tan”'\[3=60" and 0, =tan'(1)=45’

So, z,=2(Cos60° +iSin60" ) and

z, =/2(Cos45° +iSin45)

Now,

2 2(Cos60°+iSin60")
# \2(Cosas +isinds’)

=2 [Cos(60° ~45°)+ iSin(60° - 45°)]

= \/E[Cosl 5+ iSinlS"] = \/Ecisl 5°

Visual
Representation of
Multiplication of

Complex Number in
Polar Form

7 — skill 1.3

Understanding Polar Representation:
Interpret and demonstrate comprehension of the

polar representation of complex numbers.
Applying Operations in Polar Form:

Apply operations (+,—, x,+) with complex numbers
proficiently in polar representation.

1.

_

B — Exercise 1.3————— 1

Write the number in polar form with argument
between —m and Tr.
(i) -3+3i
(iii) 3+4i

(i) 1-~/31
(iv) 8i

In Exercises Write the complex number in
trigonometric form

Complex Number & Polar Form [(@)iB:111 59|

Imaginary
axis

Imaginary
axis (ii)

)

-2-1
Imaginary

(i) axis

Imaginary
axis

3. Find the indicated power using De Moivre’s
Theorem.

(i) (1+i)” (i) (243 + 21')5
(iii) (1 —i3 )5 iv) (1-i)’

4. Write the number in the form of a + bi

T

i) e (ii) &> (iiii) >

T+

(iV) efm' (V) eZH’n’

5. Express each of the following complex numbers

(vi)e

in rectangular form

(i) 3cisZ (ii) 7cist  (iii) Scis>
4 2
(iv) 10cis0.41
6. Perform the indicated operations and give the

results in polar form.
(i) (1+4)(1-+/31)

(iii) (1+4)*

(if) (/3 -i)(-1+1)
(iv) (1-iv3)

o i o )
(1+i\/§)(\/§+1)

(vii)

I+
7. Perform the indicated operations in each and
express the results in the form a + ib.

(i) [ 4(Cos29"+ iSin29°)]B(Cos16° +iSinl6° )}
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(ii) (\/gcis28°)(\/gcis8°)(2cis9°)

.. 6(Cos51" +iSin51°)
(iii)
2(Cos21" +iSin21")

10(Cos143° + iSin143°)
5( Cos8 + iSin8°)

(cis180°)(6cis99°)
3( Cos39° + iSin39°)

15(Cos48° + iSin48°)
(3cis46°)(2cis32°)

(vii)

Equations and in-equations
involving polar form

In the world of math, complex numbers in polar form
are like a special code that helps us solve equations
differently. By understanding this code, we can tackle
both simple equations and inequalities in a unique
way. In this section, we'll dive into the world of
complex numbers and polar form to unlock their
secrets in solving mathematical puzzles.

Example@ Solve the equation z2=1+i for z in
polar form.

Solution:
First, express 1+i in polar form. Its magnitude is

VI 412 =4/2, and its argument is % (since it forms

a 45-degree angle in the complex plane).

1. So, 1+i= \/E(cos%+ isin%].

2. The equation becomes z> =~/2e* .

3. Taking the square root of both sides, we get
1

= J_r[\/zeij‘r T .

4. This simplifies to z = +42¢%
solutions in polar form.

Example

Find all complex solutions to z° =§.

, which are the two

Solution:

Since we are trying to solve z> = 8, we can solve for
1

zas z=8. Certainly, one of these solutions is the
basic cube root, giving z = 2. To find others, we can
turn to the polar representation of 8.

Since 8 is a real number, which is in the complex
plane on the horizontal axis at an angle of 0, giving

the polar form8e”. Taking the % power of this gives

the real solution:

(8P =8 (")

However, since the angle 2w is coterminal with the
angle of 0, we could also represent the number 8 as

8 27

=2¢" = 2cos(0)+ i25in(0): 2

. Taking the % power of this gives a first

complex solution:

(8327:1) 83( Zm)%=2e27” _2cos(23 jﬂZsm(Z;]

=2[—%j+i2[§}
=—1+/3i

For the third root, we use the angle of 4xt, which is
also coterminal with an angle of 0

847” 1 4n
(s

83( 4m)§=2e?‘=2cos 4z —i2sin(4—n
3 3

()3

=—1-3i

Example@ Solve z* =16i

Solution:

To solve the equation z* =16 step by step, we'll
first convert the right-hand side to polar form, and
then find the fourth roots of the complex number.



1. Convert 16i to Polar Form:

o The magnitude () is the absolute value of 164,
which is 16.

o The argument (6) is the angle made with the
positive real axis. Since 16i lies on the positive

imaginary axis, 0 is % (or 90 degrees).

e Therefore, in polar form,

16i=16 cosz+isinE or 16e? .
2 2

2. Set Up the Equation in Polar Form:

o The equation now is z* =16e? .

3. Find the Fourth Roots:

e To find the fourth roots, we take the fourth root
of the magnitude and divide the argument by 4.

The fourth root of 16 is 2 (since 2* =16)
Divide the argument z by 4, To4=T,
2 2 8

The general formula for the nth roots of a

. . i( nO+2k7
complex number in polar form is re'"’**")

where,k=0,1,2,...,n—1.
For the fourth roots, k takes values 0, 1, 2, and 3.
4. Calculate the Roots:

i

For k=0: z=2e" .

Fork=1: z= 2ei[%+%) = 2e%n .

s

— lgl
8

For k=2: ZzZei( ]:26 8

,-(LL”) i3z
Fork=3: z=2¢'\® ?/=2¢ 8 .

These are the four fourth roots of 16i in polar form.
Each root represents a complex number that, when
raised to the fourth power, equals to16i.

Polar Inequations
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Polar inequalities, or polar inequations, are
mathematical expressions used in the polar
coordinate system to describe regions where an

inequality is true. These inequalities are particularly
useful in areas such as physics, engineering, and
mathematics, especially when dealing with circular
or spiral shapes

Polar Inequalities

A polar inequality looks like r > f(8),r < f(6),
r = f(0),orr < f(60), where:

e ris the radial distance from the origin.
e @is the angle.
e f(0) is a function of 6.

These inequalities describe regions in the plane. For
example, <2 describes all points inside a circle of
radius 2, centered at the origin.

Example

Shade the region described by the polar inequalities

0<r<o, %S 0< % In the shaded region below, 0 is

restricted to be between % and % (including those

angles). Within that range for 0, all positive r values
are allowed. Thus, the shaded region shown below is
represented by the polar inequalities

0<r<o,f<g<t
6 3

.
el

S Il v
Tﬁ 3n 3

2
Example @ Shade the region described by the

polar inequalities 1<7<2.5,0<0<2x

Solution:

In the shaded region below, ris restricted to be
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between 11 and 2.5. Notice that we do not want to
include the points corresponding tor = 1 andr =
2.5,s0 we use dashed lines instead of solid ones. Any
value of 8 between 0 and 2w is allowed. Thus, the
washer shaped region shaded below is represented by
the polar inequalitiesl<r<2.5,0<60< 27

S

(=)}

a

\\
SN

7 2> pyiy
SR A S
4n 3z
3 3n 3

Example

Write a set of polar inequalities to describe the
shaded region shown below.

The shaded region begins at the origin and has an
outer radius of 2. Therefore, 0 < r < 2

The shaded region stretches from the angle % to the

angle 4?7[,s0 %3034?”.

Putting together these bounds for r and 0 gives us the
polar inequalities,

Example Convert the following equations

and inequalities in Cartesian form:

0< arg(;jj jﬁ %

To solve this question, which is 0 < arg 273 <Z,
2+i ) 4

we need to understand what this inequality is
asking is to convert it from polar to cartesian
coordinates. This inequality specifies that the angle
of the complex number formed by the expression

2+1
down step-by-step:

Step 1: Simplify the Expression

First, let's write z as x+ yi, where x and y are the

is between 0 and Z radians. Let's break this

real and imaginary parts of z , respectively. Then,

substitute this into the given complex fraction:
z=3 :(x+yi)—3:(x—3)+yi

Now, divide by 2+1i. To simplify, multiply the

numerator and the denominator by the conjugate of

the denominator:

(x—3)+yi' 2—i =(x—3)(2—i)+yi(2—i)
240 2-i (2+i)(2-1)

(x—3)2—(x—3)i+2yi—yi2
4+1

_2x—6-xi+3i+2y-y
5

_ (2x—6+ 2y)+(—x+3+2y)i
5

Let's denote the real partas u and the imaginary part
asv.

dx—

g2 6+2y
5

v:—x+3+2y
5



Step 2: Interpret the Inequality

z—3

The inequality 0 < arg( 2

js 7 means the angle

+1 4

formed by u +vi lies in the first quadrant between

the positive x -axis and the line y=x

Step 3: Convert to Cartesian Inequality

The angle condition translates into inequalities

involving u and v :

1. v>0 since the angle must be non-negative.

2. tan(arg(u+vi)) <1, which simplifies to 53 1.
Substitute the expressions for # and v :

—x+3+2y

< L I
O tan 6+ 2y

5

7
4

-x+3+2y

1 5
2x—6+2y

5
Taking “tan” on both sides we have
-x+3+2y <
2x—6+2y
—Xx+3+2y<2x—-6+2y
3x>9
x=>3

T
tan <—
4

1

-x+3+2y

<tan'—02
O=tan s 62y

5

Taking “tan” on both sides we have
-x+3+2y20
Now assuming the minimum value from x >3
which is “x=3"
—3+3+2y2>0

y=>0
Conclusion
For the complex number z = x+ yi to satisfy the

given polar inequality, the real part x must be at
least 3 , and the expression and value of y must be at
least 0.This defines a specific region in the complex
plane where the original inequality holds
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Applications of Polar Inequalities
1. Navigation and GPS:
Polar inequalities define safe travel zones and avoid

obstacles.
Example: A ship must stay within 10 km of a lighthouse

but avoid 30° to 60° from the north:
<10

O¢ [30°,60°]

2. Radar and Sonar Systems:

Define detection range and sector for radar and sonar.
Example: Detect objects within 15 km and between 45°

and 1357 : <15
45" <0 <135

3. Astronomy:

Focus telescopes on specific sky regions, avoiding light
pollution.

Example: Observe within 2()° of a star, excluding 1((°

t0 120°
© F <20

O¢ [1005,120°]

4. Geographical Zoning:
Urban planners define zones for construction and traffic

management.
Example: Buildings within 5 km of the center, restricted

to 0 to 90° : F<5

0" <6 <90
5. Military Defense:

Define safe zones and target areas in military operations.
Example: Monitor within 50 km, excluding p(° to

240° - #<50
O¢ [200°,240°]
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7)— skill 1.4
Application to Equations:
Demonstration of equations & inequations involving complex numbers in polar form. |

B — Exercise 14— 1

1. Solve z=+/1+i in polar form.

2. Find the polar form of the complex number z=-1-i.

3. Solve z* =—4 in polar form.
4. If z=3(cos§—|—isin§], find z°.

5. Determine the modulus and argument of z if z* =2—2j.

6. Solve for z in the equation z* = 8i.

7. If z=2e* and z,=4e?, find A in polar form.
)

8. Solve z*=-16 in polar form.

9. Solve the equation z° = 32(00s%r+ i sin'%rj for all values of z in polar form.

10.Write the Polar inequalities describes by the following Polar Region

Tt EISUE O VO S A

e e

o M

A

Y.

i e A

e ] M A

D E

11. Shade the region described by the polar inequalities 2<7<4 and —% <0< % .

12. Convert the following inequalities in to possible simplest Cartesian form:

T

G) —%s arg(z+3i)<0 (i) zz<16¢> (iii)—%s arg(z+2—i)£%
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Student Learning Outcomes —@

< Apply concepts of complex numbers to real world
problems (such as cryptography, wave phenomena,
calculate voltage, current, circuits, the velocity and
pressure of the fluid).

Applications of Complex

Numbers

Step into the real world of complex numbers, where
we'll see how they help solve practical problems in
areas like electronics, waves, and fluid dynamics.
This section connects classroom theory with real-life
applications, showing how complex numbers are key
in understanding and solving everyday challenges in
various fields

Example Voltage Across a Capacitor in an

RC Circuit

In an AC circuit with a series combination of a 100-
ohm resistor and a 50 puF capacitor, find the voltage
across the capacitor. The circuit is connected to a
200V, 60 Hz AC supply.

> v,

|
Vci
—»1 R C

A
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Hints:

. 1
Inductive Reactance: Xc = —— where o=2xnf
W

Total Impedance in Polar Form: Z =R - jX_,

with magnitude | Z |=\/R*> + X and phase angle

0 = arctan ( X, j
R

Current in AC Circuit: :g

Voltage across Inductor: V, = Ix jX,
Solution:
1. Calculate the Capacitive Reactance ( X ):

X-= !
27fC

f=60Hz, C=50x10"° F

1

X.= — ohms
27x 60x50%x10

X~ 53.05 ohms

2. Calculate the Total Impedance (Z) in Polar
Form:

Z=R-jX,
Z =100— j53.05 ohms

Magnitude:
|Z = 100" +(~53.05) ~ 114.9 ohms

Phase Angle: 0 = arctan| — 53.05
100

]z -27.8°

3. Calculate the Current (I):

=L
z
_200L0°
1149 -27.8°

I=1.74.27.8°4
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4. Calculate the Voltage Across the Capacitor
(Ve):

Ve=1xjX.
V.=1.74-27.8°%53.05290°

V= 923117.8%volt

Conclusion:

The voltage across the capacitor is approximately
92.3.2117.8° volts.

Example @

If a fluid's velocity at a point is represented by the
complex number 5¢ * m/s, determine its horizontal
and vertical velocity components.

Solution:

The complex number for the velocity is in polar

in

form; 5e *. In polar form a complex number is
represented as re? where 7 is the magnitude and
60 is the angle in radians.

Convert to Rectangular Form:

The rectangular form of a complex number is a+bi,
where a is the real part and b is the imaginary part.
To convert from polar to rectangular form, use the
formulas x = rcos(0) and y = rsin(0).

Calculate the Real Part (Horizontal Component):

x= 5COS(—£j
4

x=5x0707 = x=3 54 m/s
Calculate the Imaginary Part (Vertical

CombPonent):
y=5sin(—x/4)
y=~—5x0.707 =

o
2. 3

y~—3.54m/s

e

Example @

In a wave simulation, an electromagnetic wave's
phase and amplitude are represented by 2—i. Find the
inverse of this representation and interpret its
physical meaning

Solution:

Given complex representation: 2 — i

Find the complex conjugate: 2 + i (inverse
representation)

Calculate amplitude:

For both representations: /2° + (—1)2 =5

Calculate phase:

Original representation: arctan (L )z —0.4636

radians or approximately —26.57° degrees

. 1 .
Inverse representation: arctan (Ejz 0.4636 radians

or approximately 26.57 degrees

Interpretation:

The amplitudes of both representations are the same
(5). The phase of the inverse representation is the
negative of the phase of the original representation,
suggesting a 180-degree (m radians) phase shift in
the electromagnetic wave.

71— skill 1.5
Applying Concepts in Real-World Contexts:
Apply complex number concepts practically to real-
world scenarios such as cryptography, wave

phenomena, electrical circuits, fluid dynamics etc.
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n —— Exercise 1.5——— u

1) A wave is represented by the complex number
5-3i. Calculate the magnitude of this wave.

2) Convert the impedance 4+4i ohms of an electrical
component into polar form.

3) If two signals are represented by 2+3i and 3—i,
find the product of these signals.

4) Divide the complex voltages 10+6i V by 2—4i V
and express your answer in rectangular form.

5) If a mechanical wave is represented by the
complex number 4e?, describe its amplitude and
phase shift.

6) If a fluid's velocity at a point is represented by the

iSt
complex number 27e © m/s, determine its
horizontal and vertical velocity components.

7) Given an AC circuit with an impedance of 8+6i
ohms and a voltage of 10e3 volts. Calculate the
current using Ohm's Law

8) A fluid's velocity at a point is represented by the
complex number 5—2i m/s. What is the angle of
the flow direction with respect to the horizontal

u —— Review Exercise 1 ——
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In an AC circuit, the voltage V and current I can
be represented as complex numbers. If the
voltage across a circuit is represented by 5+12i

volts and the current by 2+3i amperes, calculate
the power of the circuit.

10) Imagine you have a simple encryption system

where each letter of the alphabet is assigned a
unique complex number. If'A' is assigned 1+2i,
'B' is 2+3i, and so on, what would be the complex
number representation of the word "AB"

11) In an AC circuit with a series combination of a

75-ohm resistor and a 0.15 H inductor, find the
voltage across the inductor. The circuit is
connected to a 150V, 50 Hz AC supply.

Hints:
Inductive Reactance: X, = wL where o=2nf

Total Impedance in Polar Form: Z =R+ jX, ,
with magnitude | Z |=/R* + X, and phase angle

0 = arctan (ﬁj
R
Y

Current in AC Circuit: [ = ~

Voltage across Inductor: V, = Ix jXL

1. Each of the questions or incomplete statement below is followed by four suggested answers or completions.

In each case, select the one that is the best of the choices.

(i) IfxX’=—9thenx =

(@ 3 (b) -3 ©
(ii) The real part of complex number z = 7i is:

(@ 0 (b) 7 (c)
(iii) The imaginary part of complex number z = 8 + 101i:

(@ 0 (b) 10 (©
(iv) The additive inverse of 3 +li is

2
(a) 617 (b) 6—i (©

20

3i (d) *3i
@ 1
(d) 8
1. I,
—3—51 (d) 3—51
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(v) The multiplicative identity of complex number is:

(@) O (b) 1 (c) 2 (@ 3
(vi) The additive identity of a complex number is:

(@ 0 (b) 1 (¢ 2 @ 3
(vii) V1250 =

2

(a) -25i (b) 25 (c) 25 (d) *25i
(viii) i''=——

(a 1 (b) -1 (¢) i d -
(ix) The conjugate of 7 +4i =

(a) —7+4 (b) 7-4i () —7-4i d 7+4
(x) Ifwereplace i by —i in z = x + iy then another complex number obtained is known as:

(a) primer factor of z (b) reciprocal of z

(¢) additive inverse of z (d) complex conjugate of z

(xi) Ifz1=3+1iandz =1+4ithenRe(zi —20)=———
(@ -3 (b) 2 (¢ 3

(xii) |z,+2z,|<

@) |zi|+|z] ®) |z |+| 2| © |zi|+|z|
(xiii) ¥+’ =—

(@ +y)x—y) () x+y)&x-y)  (© &+y)x-y)
(xiv) If|z’|+1=z*—1] then z lies on:

(a) acircle (b) real axis (¢) imaginary axis
(xv) The conjugate of the complex number six X —1 cos 2x is:

(a) sinx+ticos2x (b) cosx—isin2x  (¢) —sinx—1icos2x

(xvi) Ifz=-1-1,thenargzis

(a) % (b)% (©) 57“
(xvii) (li js + (ﬁ j
2 2
(a1 (b) 4 (© 2

\4n+l
(xviii) If n is positive integer then GH ) =
—1

(@1 (b)-1 ()i

@ 2

@ [z ]+]z]

(@) (x+y) -y

(d) None of the above

(d) —sinx +1 cos2x

(d)4rn

()8
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(xix)If i*=—1, then i+i*+i’ +............. to 1000 terms is equal to
(@1 (b)-1 (©) 1 (d)0

o 17 582 6)
(1+i)

(a)(15,20) (b)(20,15) (¢) (~15,20) (d)(~15,-20)

a+ib then (a, b) equals

2. Solve the following and write the result in standard form.

i) —8i(2i—17) i) (-4 -8i)(3+ i) iii) (7-5i)(-2 - 3i) iv)%
1
) ) o 2430 oo 3—4i
v (8-4i)(=3+9) Vi) 7= ey ey

3. Evaluate x> —2x+2 for x=1+ i.
4.Evaluate x*—=7x—5 for x=1-2i.

5. Find E, the voltage of a circuit, if 7 =(4—5i) amperes and R =(3+7i) ohms.
6. Find E, the voltage of a circuit, if / = (2 - 3i) amperes and R = (3 + 51’) ohms.

7. The mathematician Girolamo Cardano is credited with the first use (in 1545) of negative square roots in
solving the now-famous problem, “Find two numbers whose sum is 10 and whose product is 40.

8. Show that the complex numbers 5 + i15 and 5- if15 satisfy the conditions of the problem.

9. Represent the Following Complex numbers on a Graph in standard Form
. 2 .2
i) 5 cos ™ +isin~ ii) 10 cos X 4 isin 2L
9 9 9 5
iii) 3(cos165.5" +isin165.5° ) iv) 9(cos58° +isin58°)

10. Perform the Operation on the Following & Represent result in Trigonometric Form
i)|2 cos T+ isin ||| 6] cos—+ isin -
4 4 12 12
ii) [0.45(cos310" +isin310° )]x [0.6(cos200" +isin 200")]

cos50? +isin50°
c0s20° +isin20°

12(c0552” +isin52”)
iv)
3(cos110° +isin110°)

11. Use DeMoivre’s Theorem to find the indicated power of the complex number
5
. 8 .. A T .. T . .. AT
i) (3-2i) ii) 2(\/§+z) iiii) {2(cosﬁ+zsmﬁj| iv) [3(c05150 +isin150 )}



Chapter 1| Complex Number & Polar Form

[ | — Summary — [ |

¢ <

Representation of Complex Numbers: Complex numbers are represented as z=a+ib or (a,b), where
a and b are real numbers, and i=—1.

Understanding Real and Imaginary Parts: The real part of a complex number is @, and the
imaginary part is b.

Condition for Equality: Complex numbers are equal if and only if their real and imaginary parts are
equal.

Complex Conjugate: The complex conjugate of z = a+ib is z = a—ib.

Absolute Value or Modulus: The modulus of a complex number z=a+ib is |z|=~/a’ + b’

Solving Simultaneous Linear Equations: Complex numbers are used to solve simultaneous linear
equations with complex coefficients.
Factoring Polynomials: Polynomials can be factored into linear factors, e.g.,

> +a’ :(z+ia)(z—ia) or 23—322+Z+5:(z+l)(z—2—i)(z—2+i).

Solving Quadratic Equations: Quadratic equations of the form pz’ + gz +r =0 are solved using

methods like completing the square, with p, g, r as real numbers and z as a complex number.
Understanding Polar Coordinates: Polar coordinates are a coordinate system that represents points
based on their distance and angle from a reference point (the pole).

Polar Representation of Complex Numbers: Complex numbers can be represented in polar form as
z=r(cosf+isind), where r is the modulus, and 6 is the argument (angle).

Polar Multiplication: In polar form, complex numbers can be multiplied by multiplying their moduli
and adding their arguments.

Polar Division: In polar form, complex numbers can be divided by dividing their moduli and
subtracting their arguments.

De Moivre's Theorem: De Moivre's Theorem states that (cosf+isind)"'=cos(nd)+isin(nd), which is a
powerful tool for raising complex numbers to integer powers.

Euler Form: Euler's formula, e’=cose¢ +isine, connects complex exponentials to trigonometric
functions and is essential in complex analysis.

Application to Equations: Complex numbers in polar form and Euler's formula are used to solve
equations involving complex quantities.

Real-World Application: Complex number concepts find practical applications in various fields,
including cryptography, wave phenomena, electrical circuits, fluid dynamics, and measurements of
physical quantities like voltage, current, velocity, pressure, and more.




2 Matrices and
| Determinants
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Matrices are fundamental in the world of cryptography, where they are instrumental in ensuring the security of §
digital communication and data. In cryptography, matrices are indispensable for encoding and decoding messages,

preserving the confidentiality and integrity of sensitive information. Cryptographers employ matrices to perform
intricate mathematical transformations that obscure the original message, rendering it indecipherable to *
" unauthorized individuals. These operations leverage matrix properties, such as multiplication and inversion. |
Matrices play a crucial role not only in data encryption but also in digital signatures, authentication and secure
§ communication protocols. This chapter explores how matrices are the cornerstone of modern cryptography, |
safeguarding the digital realm and enabling secure online transactions, confidential messages and protected data.
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Students’ Learning Outcome

h Apply matrix operations (addition/subtraction and multiplication of matrices) with
real and complex entries.
@A Evaluate determinants of 3 x 3 matrix by using cofactors and properties of
determinants.

Use row operations to find the inverse and the rank of a matrix.
g Explain a consistent and inconsistent system of linear equations and demonstrate
through examples
B Solve a system of 3 by 3 nonhomogeneous linear equations by using matrix

inversion method and Cramer's Rule.

Solve a system of three homogeneous linear equations in three unknowns using the
Gaussian elimination method.

Apply concepts of matrices to real world problems such as (graphic design, data
encryption, seismic analysis, cryptography, transformation of geometric shapes,
social network analysis).




Knowledge

(1)

@ © © ©

© © ®© ©

Matrix Operations:

Scalar Multiplication, Addition, Subtraction of Matrices: Perform arithmetic
operations (addition, subtraction, scalar multiplication) on matrices.

Matrix Multiplication: Understand and apply rules for multiplying matrices, both
with real and complex entries.

Determinant of a Square Matrix: Define determinant, minor, and cofactor of an
element of a matrix.

Adjoint of a Matrix: Know and use the adjoint method to calculate the inverse of
a square matrix.

Properties of Determinants: State and prove properties of determinants for
various operations.

Matrix Row Operations:

Row and Column Operations: Understand and perform row and column
operations on matrices.

Echelon and Reduced Echelon Forms: Define and reduce a matrix to its echelon
and reduced echelon forms.

Rank of a Matrix: Recognize the rank of a matrix using row operations.

Systems of Linear Equations:

Homogeneous and Non-Homogeneous Equations: Distinguish between
homogeneous and non-homogeneous systems of linear equations in two and three
unknowns.

Consistent and Inconsistent Systems: Define and demonstrate consistent and
inconsistent systems of linear equations through examples.

Solving Systems of Equations: Solve systems of equations using various methods:
Matrix Inversion Method

Gauss Elimination Method (Echelon Form)

Gauss-Jordan Method (Reduced Echelon Form)

Cramer's Rule for 3x3 systems.

Application:

Real-world Problem Solving: Apply matrix operations and solution methods to
real-world problems involving systems of equations and matrix manipulations.

Skills

(1)

Matrix Operations Proficiency:

» Conduct arithmetic operations on matrices accurately.

»  Apply rules for matrix multiplication confidently.

»  Understand the properties of matrices under addition and multiplication.
Matrix Properties and Manipulation:

p Verify the transpose of matrix products.

p Calculate determinants, minors, and cofactors for square matrices.

» Recognize singular and non-singular matrices' significance.
Understanding Properties of Determinants:

» Apply and prove properties of determinants for various matrix operations.
p» Evaluate determinants without expansion using determinant properties.
Matrix Row Operations Mastery:

P Perform row and column operations on matrices proficiently.

P Reduce matrices to echelon and reduced echelon forms effectively.
Systems of Linear Equations Problem-Solving Skills:

» Differentiate between homogeneous and non-homogeneous equation systems.
P Identify consistent and inconsistent equation systems.

P Utilize multiple methodologies to solve equation systems efficiently.
Real-world Application Proficiency:

Matrices and Determinants Chapter 2

Pre & Post Requisite
1

Class 10
Chapter # 2
Matrices & Determinants

¥

Class 11
Chapter # 2
Matrices & Determinants

» Apply matrix operations and solution methodologies to real-world problems involving linear

transformations and modeling.
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Introduction

Building on the basic concepts you've learned in
earlier classes, we're ready to explore deeper into
matrices, a pivotal element in higher mathematics that
bridges simple equations and complex systems. In
this chapter, we will explore advanced topics essential
in both academic settings and practical applications
across Mathematics, Science, and Engineering.

Matrices enable us to solve linear equations
efficiently, perform geometric transformations, and
even facilitate data encryption. We'll investigate the
use of determinants and methods like Cramer's Rule,
which provide precise solutions to intricate problems.
This exploration will not only enhance your
mathematical skills but also prepare you for further

academic pursuits and professional challenges.

For example, the information regarding one day
cricket matches played in a season between Pakistan
and England is presented in the following table.

Play | Win Draw Lost
Pakistan 13 4 3 6
England 13 6 3 4

The information is clear when presented in this way.
If we want to know how many matches England lost
against Pakistan, we go along the row ‘England’ and
column ‘Lost’ and find that it is 4. As long as we
remember what each number represents, we could
remove the row and column headings and write just
the numbers, enclosing them in square brackets or
parenthesis such as

13 4 3 6
13 6 4

ﬁ. Matrices ll

Matric and its Notations

(98]

A matrix is a rectangular array of numeric symbols
or expressions arranged in rows and columns. e.g.

8 4 1 3
X=
8 3 1 4
is a matrix. Usually a matrix is represented by the
capital letters and their entries by small letters.

In general, an m % n matrix has the following rectangular
array:

X X Xy X

n

Xor Xy Xoyee

x2 . . .
C11<i<m,1< j<ni,
’ i,je N

X= [xzf ]m:

xml xm2 xm.3” xmn

The element, x;; is an element lying in the ith row and
jtn column and is known as the (i, j)th element of X.
The number of elements in an m X n matrix will be
equal to mn.

4 —Interesting Information

Matrices are essential for representing and
manipulating data in various fields, such as computer
graphics, economics, and genetics. They enable
complex calculations and data analysis, making them
invaluable tools in science and engineering.
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Let us consider an example. Assume that we have to
write the following results of different subjects in a

3 by 4 matrix where each row corresponds to a
different student and each column corresponds to a
different subject

Student A: Math (85), Science (92),
English (78), History (88)

Student B:  Math (76), Science (89),
English (95), History (82)

Student C:  Math (90), Science (84),
English(88), History(91)



Solution:
Math. Sci. Eng. Hist.
Student A

Student B

&

Student Learning Outcomes —(©)

<> Apply matrix operations (addition/subtraction and
multiplication of matrices) with real and complex
entries

Algebra of Matrices

In this section we set up an algebra of matrices,

defining various operations of addition, subtraction,
multiplication and so on, we have been familiar about
these operations from out early grades.

Note

9
A+A=24,4+ A+ A =34 and in general,

if n is a positive integer, then A+ A+...+ A=n4
%K—J
n—times

2.2.1(a)Scalar Multiplication

IfA =
product of k£ and A, denoted by kA, is the matrix
formed by multiplying each entry of 4 by £, that is,
kA = [ka;;] whose (i, j)th s ka; . Obviously, order
of kA is m X n.

[a;;] is m x n matrix and k is a scalar, then the

If A = [a;;] € Mp,xy, (the set of all m x n matrices
over the real field R then ka;; € R, for all i and j,
which shows that k4 € M,, ., .It follows that the set
M, ., possesses the closure property with respect to
scalar multiplication. If 4, B € M and r,s are scalars,
then we can say that

rsd)=(rs)4, (r +s)A=rA+ sA, A+ B)=rA+rB
For example, if 4 = { 2 3} and £k is any scalar, then

kA_kz 4] [2k 4k
8 3| sk 3k

Matrices and Determinants Chapter 2

2.2.1(b)Addition of Matrices

If A and B are m x n matrices, the sum of 4 and B,
denoted by A4 + B, is the m x n matrix obtained by
adding the corresponding entries of 4 and B; that is,

A + B is the m X n matrix whose (i, j)thentry is a;; + b;;.

Example@ Add A and B.
e 2 2 3 iB= 3 4 6
oo 2™ 2 s
Solution
2 2
A+ B 3 N 346
1 -1 2 125
| 243 2+4 346 |5 69
L1+l —142 245] |2 17
2.2.1(c)Subtraction of Matrices

If A and B are m X n matrices, the difference of 4 and
B, denoted by 4 — B, is the m x n matrix obtained by
subtracting the corresponding entries of 4 and B; that
is, A — B is the m x n matrix whose (i, j)th entry is a;
— bjj.

Notice that the matrices 4 and B must have the same
order for their sum and difference to be defined.

If 4= > 2 4 d
Example@ 0 -1 3 Man
{8 7 3}
B= then,
1 1 2 s
5 2 4 8 7 3
Solution: 4 —B= —
0 _1 3 2x3 1 1 2 2x3
B 5-8 2-7 4-3 B -3 51
0-1-1-1 3-2 -1 21 s

2<3
Example@ Compute the matrices 4 + B, 34 —A,
and 34 + 4B, where

3 4 2 -4 1 0
A= and B =
ol

Solution: We have
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-1 5 2}
A+B= ,
7-9 1
9 12 6} 3 -4 -2
34 = A=
6 -9 0 -2 +3 0

{6 8 4}
34— A= and

4 -6 0
srap |9 12 6}+ -16 4 0}
6 -9 0] [20-24 4

-7 16 6]

(26 -33 4]

2.2.1(d)Multiplication of Matrices

Two matrices 4 and B are said to be comfortable for
multiplication giving the product 4B, if the number of
columns of A4 is equal to the number of rows of B. In
the product, 4 is called the pre-multiplier or pre-factor
of B and B is called the post-multiplier or post-factor
of A.

Matrix B

nxp
These
must be

equal

Matrix A

mxn

L

The order of AB
ism x P.

The entry in AB is obtained by multiplying the entries
in i row of 4 by the corresponding entries in j*
column of B and adding the results.

For an m X n matrix 4 = [a;] and an n X p matrix

B = [bjj], the product AB = [c;] is an m X p matrix,

where cij=air . byt aiz. by +aiz. b3+ ...+ ain. by

In other words, the entry c; in AB is obtained by
multiplying the entries in row i of 4 by the
corresponding entries in column j of B and adding the
results.

b .+ai2 b2j+ ..t ain bnj: Zk=latkblg'

Cyj=a,by;

Look at the following matrices that illustrates the
expression for c;j

Element in the i th row and]

i throw of A J th column of B [ j th column of AB

EE| | H |- @
m

v

Jth column
_ - - -
y Gy q, by by - (b | b,
ay ..., by, by | by | Dy,

ith oW \@,a, a,
_Clml a.... amp . _bpl bp2 . bpj bp_uxn
a,b;+a,b,, %.c.. +a,b, =c,
€y Cpyene Cpjee €
J

L — mxn

Compute the products CD and DC

Solution: The orders of matrices C and D are 1 X 3
and 3 x 1 respectively; therefore, the product CD is
possible, and results in @ matrix of order 1 x 1 as
shown below.

1
CD=[2 3 4]is |-
2

3x1

=@M +G) =D +H)]=[7]



The orders for D and C are 3 x 1 and 1 x 3
respectively and therefore, the product DC is also
possible. However, multiplication of these results in a
3 x 3 matrix as shown below.

1
[2 3 4],

3x3

9

Note

(i) If 4 is a square matrix, then the product 44
is defined and is denoted by 42. We define 4°=4.4%or
A?.4 and so on and in general A"=4™'. 4 or 4.A™'.

(ii) We say that in AB, the matrix B is pre-multiplied
(or multiplied from the left) by A, and is post-
multiplied (or multiplied from the right) by B.

1 3
Example@ Compute 4B if A=|4 1
6 1 0
2 i 3
and B= |4 1 —j
1 2 3
Solution:
1 3 2(|2 i 3
AB=|4 1 2|14 1 —-i
6 1 0|1 2 3
2+12+2 i+3+4 3-3i+6
AB=| 8+4+2 4i+1+4 12-i+6
12+4+0 6i+1+0 18-i+0
16 i+7 9-3i
AB=|14 4i+5 18-i
16 6i+1 18—
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Example Softball Team Expenses

Two Cricket teams submit equipment lists to their
sponsors.

Team A Team B
Bats 12 15
Balls 45 38
Gloves 15 17

Each bat costs 800 Rs., each ball costs 100 Rs., and
each pair of gloves costs 1000 Rs.. Use matrices to
find the total cost of equipment for each team.
Solution:

The equipment lists and the costs per item can be
written in matrix form

12 15
A=145 38|,
15 17

The total cost of equipment for each team is given by
the product BA.

B=[800 100 1000]

12 15
BA=[800 100 1000]|45 38

15 17

BA =[(800x12)+(100x 45)+(1000x 15)
(800x 15)-+100x 38)+(1000x 17)]
BA=[29100 32800]

So, the total cost of equipment for the team A is
29100 Rs. and the total cost of equipment for the
Team B is 32800 Rs.

Notice that you cannot find the total cost using the
product AB because it is not defined. That is, the

number of columns of (2 columns) does not equal the
number of rows of (1 row)
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2.2.2 Properties of Matrix Addition, Scalar Multiplication and Matrix Multiplication

(Properties of Matrix Addition and Scalar Multiplication)
Let 4, B, and C be m x n matrices and let s and i be any scalars. Then

(i) A+B=B+A. (commutative law of matrix addition)

(i) (A+B)+C=4+(B+C) (associative law of matrix addition)

(iii) A+0=4. (Additive Identity O is a null matrix)

(iv) 4 +(—A)= 0. (Additive Inverse —4 is negative of matrix A4)

v) s( A+B ) =sA+sB . (Distributive Property multiplication over addition)
(vi) (s + t) A=sA4+14. (Distributive Property addition over multiplication)

Properties of Matrix Multiplication

For matrices A, B, and C, assuming that the indicated operations are possible:

A(BC)=(4B)C. Associative Property of Multiplication
A( B+C ) =AB+ AC Distributive Property
(B +C ) A=BA+CA. Distributive Property

@— Skill 2.1
Matrix Operations Proficiency:
e Conductarithmetic operations on matrices accurately. e Apply rules for matrix multiplication confidently.

e Understand the properties of matrices under addition and multiplication.
B——Exercise 2. ] ————1n 2. If possible, find matrix A.
1. Write the following products of matrices as a . 3 2 -3 5 . 1 3 1 0
. . (i) 4 = (ii)) 4 =
single matrix. 0 1 6 7 2 9 0 1
1 0 7 56 4 2 . 5 i i 5
4 -6 7 (i) 4 = (iv) 4| . |= ,
@) 3 2 -1 7 8 1 0 -i 6 6 —i
8 9 10
-5 -2 5
3. Solve each of the following matrix equation for x
0 01 andy.
(ii) a3 10
ii 21 6 i x—6y _ 5
100 -x+2y| |6
1 - 53] [-1 -5 o [-5 x 2] [x =5 8]
(iii) + (i) =
-1 1/||4 1 6 8 4y 0 31 [0 y 7]
5 -6 7|[7 2 4 (i —4x+2 3 7] [6x 3 7
. iii =
iv) |8 2 3(|13 1 0 5 3y+4 —-1] |5 2y+4 -1
1 4 6/]9 -2 1



4. Write the following sums as a single matrix.

2] [3
(i |3]+]-2 (i) [-5 2 4]+[1 0 -8]
6] |-1
iy |72 32,2 3 S
| 120] [0 -1 -2
00 -1 131
(iv) [0 4 7[+|8 65
21 3] 217

5. Write the following product as a single matrix.

7
_ -4 2 3 s 4l
i -2 {_3 ‘ _5} (i) [-2 -7 -3]|2

8

8 4 3 -9
5_8761' L =5 13
(iii) 0 21 (iv) )

0 7 0 9 6
3 -3 1|0 7 0
“v) |0 5-1||-1 -2 5
1 0 1||l6 2-1

6. Compute the indicated matrices, where

2-15 1 0-2
A= , B= .
L 4 1} {2 3 4}

(i) 44 (i) -4 (i) 44-2B

(iv) 34+2B (v) (2B) (vi) A'+2B'

(vii) 4+B (vii) (442B)  (ix) A'

(x) A-B (xi) —(B" (xii) (-B)
122

7.Prove that A= |2 1 2 | satisfies 47 — 44 —51=0.

221

i 0 0 -1 0 i
8. Letd = |, B= and C= ,
0 —i 1 0 i 0
then verify the following:
(i) AA=B=C>=-] (i) AB=-B4A=-C

Matrices and Determinants Chapter 2

607 6 44 326
9.4=|-2 6 8|,B=|4 3 0|,C={4 5 0|and
313 033 1 34

a,b are real numbers, then verify the following:

(i) A+B=B+A (ii) A+(B+C)=A+B)+C
(iiiy A+O0=0+4=4 (iv) A+(-A)=(-A)+4=0
(v) (ab)4= a(bA) (vi) a(4+B)= aA+ aB
(vii) (atb)A= ad+bA (viii) A(BC)=(4B)C

(ix) AB+C)=AB+AC (x) (A+B)C=AC+BC

10. Determine whether commutative property w.r.t.

multiplication holds in each of the following
cases or not.

. . |pq| , [ab
@ A_{r s}’B_Lc d}

) 0 4

(i) A= ,B=3 2
210

21

430
11.Let A=
{3 09

() (4')=4

} Show that

(ii) AAd'=AA

12. Solve the following matrix equations for X.

4 3 7 3 4]
and B =
2 7 3 -14]

1 58 4 6 2]
i) 2(X—A)=B.if A= B=
@ 2( )=Bif {3 -1 2} {0 —4 2]

() X—34=2B,if A= {_32

3 4 1 -1
13. If A= ,B= then find X such that
0S5 2 4

A+2X=B.
) ) 1 0 «x
14. Flndxlf[x 1] =0
-2 -3 3

15. A manufacturer of electronics produces three
models of portable CD players, which are shipped to
two warehouses. The number of units of model i that
are shipped to warehouse j is represented by ajj in the

matrix
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5000 4000 » . .
] _ 4 —Interesting Information
A=|6000 10000| the Prices per unit are
8000 5000

represented in Rs by the Matric B=[45 60 35].
Computer BA and interpret the result.

/4

Student Learning Outcomes —@

<> Evaluate determinants of 3 x 3 matrix by using

cofactors and properties of determinants

In robotics, determinants are used to calculate the
orientation and position of robotic arms. Determinants
help solve systems of equations that define the
movement and rotation of the arm, ensuring precise
control and accurate positioning in tasks like assembly

lines and medical surgeries. I

2.3.1 Determinants of square matrix

23

It is a scalar value that can be calculated from the
element of a square matrix using certain properties of
matrix. Determinate of a given matrix X is usually

y . .
dented by det [X] or |X] A. In case of 2 x 2 matrix the determinant can
. . ) be defined as
Consider a square matrix X of order n given by
r . |A|=a11 alz—aa —a,a
X X X3 e X, a,, » 11722 1221
Xy Xy Xpy e Xy,

B. In case of 3 x 3 matrix the determinant can be

X= x, x, x X —>(1)
31 32 33 e 3
. ’ defined as.
a, a, a
| Xy X X e - o %2 s
‘ . ‘ A= |ay, a, a,y
The associated determinant of X is denoted by
a3 4y 4y
X, Xy X e X,
a, a a, a a, a
22 23 21 23 21 22
Xor o Xop o Xpg e Xon = a, —-a, +a,
.. a, a a a, a
— 32 33 31 33 31 32
| X =25, X5 Xy e x,,| —>(ii)
= ai1(axn a3z — anaz) — anlan azz —as az) + aiz(az
asn—ana
X, X, X o X, 32— axn as)

. . =a11a2a33—ain a3 as—andn astanasa;t
Some determinants of higher order can be evaluated

only after much tedious calculations. The more

calculation is involved, the greater the chance of Example@ If A= {—3 6]32 {3 7}) then
error. In this section we will describe a procedure for -5 73

aiz dz1 as2 — a1z a2 dsi

evaluating the determinants of order n>3. We first det(4)=|4|=
find minors ansi cofactors of matrices in order to _ (_3)(5) —(—1)(6) = 1546=-9and
evaluate determinants. -1 5
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For M>3, we delete the second row and the third

det (B)=|B| =
3 7 column and find the determinant of the 2x2 matrix
e (3)(3)-(7)(7)=9-49=-40 formed by the remaining elements.
8 016
8 0
2.3.2 Minor and Co-factor of an Element of a Matrix 4.260.07 Moz = -1 -3
or its Determinants. -1 =3:5
=-8(-3)- (-1)0
A. Minor of an Element =24
For a square matrix X = [x;], the minor M;; of an B. Cofactor of an Element

element x;; is the determinant of the matrix formed
by deleting the i row and the j* column of X.

‘xll XIZ x13
IfX=|x, X, x|, then
Xy Xy Xy
!
xl] le xl3
) Xy X3 . -
minor of x11 =M1 = obtained as [X,,iX, X,
X3y Xy
x31 'x32 'x33
Mt = x22 X33 — X32 X23
xll x12 xl3
. _ X X, .
minor of x23 = Ma; = obtained as [x,, X, iX,
X1 Xy
Xy Xy iXay

M3 = x11 X320 — X31 X12

8 0 6
Example Let A=| 4 -6 7],
-1 -3 5
Find each of the following.
(1) Mn (i) Mas
Solution:
(i)  For M1, we delete the first row and the first

column then find the determinant of the 2 x 2
matrix formed by the remaining elements.

=(-6)5 — (-3)7
=-30+21
=-9

For a square matrix X = [x;], the cofactor a; of an
element x; is given by X;; = (1) M;;, Where Mj; is
the minor of x;.

X X X3

Thus, if X=|x,, X,, X,| ,then
X3 Xy Xy
1+1 2 x22 x23
Cofactor of x11 = X711 = (1) M1 =(-1)
X X
32 33

=1 % (x22 X33 — X23 X32)
= X22 X33 — X23 X32

Sign pattern for Cofactors

3 x 3 matrix

+ - o+ -
-+ - 4+
+ - o+ -
-+ - 4+
4 x 4 matrix
e
- 4 _ + -
+ - o+ - 4+
— + — + —
+ - 4+ -+

n X n matrix

Example For the matrix

-8 0 6
x=14 -6 7|,
-1 -3 5
(i) Xn (i) X3
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Solution:

() Xu=CED" My =D (9) = (1)(-9) =-9.
(i) Xoz=(=1)*" Moz = (-1)°(24) = (-1)(24) = 24.
2.3.3 Determinant of a Square Matrix

Let X be a square matrix of order n(> 3) given by

xl 1 xl 2 xl j xl n
le x22 x2 j x2n
|4|= — 5
X, X, x; X,
xnl xn 2 xnj xnn

The determinant | X] of the matrix X is defined to be
the sum of the products of each element of row (or
column) and its co-factor, that is

| X |=x, X, +x,X,+....+x,X,,i=12.....n—>(ii)

in’
Or
| X [=x, X, +x, X+ .+ x, X

nj’
If we put i = 1 in (ii), we get

| X |=x, X, +x,X,,+...4+x,X,, which is called

1n

the expansion of |X] by first row (or w.r.t. first row).
Similarly, if we put j=1 in (ii1), we get
| X |=x, X, +x, X, +....+x,X,, which is called

the expansion of |X] by first column and so on. Thus,

if X is a square matrix of order 3, that is
x]l ‘x12 x13

X =|x,

x31 x32 x33

X, X, |, then by (ii) and (iii), we have

| X =2, Xy + 2, X, + X5 =123 —— (i)
or| X |=x, X, +x,X,,+x,X,,; j=12,3 —>(v)
For example, if i = 2, then by (iv), we have

| X |=x, X,, +x,,X,, +x,,X,,. This can be written as

| X |= le(_l)MMm + xzz(_1)2+2M22 + x23(_1)2+3M23

9

j=12.....,n—>(iii)

32 x33 31 33

=Xy (x12x33 — Xi3X3, ) +X5 (x11x33 — X13X3 )
Xy ( X1 X3 = X X5 )

= Xy XXy X X3 Xy X Xy Xy T X X3 Xy — XX X,
X3 X, %5

= Xy Xpp X X X055, + X300, 0, = X X3 X, — XX, X5
— XXXy ————> (Vi)

Similarly, we can find |X| for other values of i and ;.

Note

If elements of a row (or column) are multiplied with
cofactors of any other row (or column), then their sum

is zero.

Similarly, we can try for other rows and columns.

4 3 2
Example Find det (4)ifA=|1 6 2
8 0 1
43 2
Solution: A=|1 6 2
g8 0 1
43 2
6 2| |1 2| I 6
det(d)=14= 1 6 2/=4] |- 2
o 1| B 1 kB o
g8 0 1

=4(6-0) —3(1-16)+2(0 —48)
=24+45-96=-27

Example@ Evaluate |X| by expanding across the

third row.



3 -1 2
X=3 1 0
I 0 -1

Solution: | X |=(1)X;, +(0)X4, +(=1)X;,

e[ Ay el
B 1 0 3

1‘
——2-6=-8

The value of this determinant is —8 no matter
which row or column we expand upon.

2.3.4 Singular and Non-Singular Matrices.

A square matrix A is said to be singular if |[4|=0,
and non-singular if [4|# 0.

For example,

and |B|=‘_51 _i‘z 1) (3)-(2)(5)=-3+10=17.
Since,

9 3
|[4| = 0, so the matrix A={ J is singular and |B|

# 0, so the matrix

{1
B
5

2.3.5 Adjoint of @ Square Matrix.

-2
3 } is non-singular.

_ all a12 . .

Let 4 = is a 2 x 2 square matrix. The
a21 a22

adjoint of 4 denoted by adj 4, it is defined to be the

matrix whose elements are obtained by interchanging

the places of ai1 and a2; but by changing the signs of

. . ay 4y
azand ay; that is adj A = .
—a, TR P
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6
For example, if 4 = then adj 4 =
4 7 2x2

Now, let X be a square matrix of order 3 x 3 . Let X’
denote the matrix obtained by replacing each element
of X by its corresponding co-factor and taken
transpose. Then X' is called the adjoint of X and is
usually denoted by adj X.

X=Xy Xy Xy

Xy Xy X3
X X, X,
Cofactorsof X=Y=| X,, X,, X,
Xy Xy, Xy
X Xy Xy
ade:Yt: X, Xy Xy
Xy Xy Xy

Example @ Calculate the adjoint of X =

Solution: Now the cofactors of the elements of X are

an(—l)l”z §=9
X, =(-1)" ? j =1
X, =(-1)" f (3) =-3
X, =(-1)" _01 §=3
X, =(-1)" 1 i =1
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1 -1
X, =(-1)" =1
5 =(-1) 1 0
3+1 _1 2
X5, —(—1) 3 s =-11
3+21 2
X., =(-1 =—
2 =(-1) 25
sl —1
X..=(-1 =5
s =(=1) 2 3‘
9 -1 -3
The cofactor matrix of X= | 3 1 -1
-11 -1 5
9 3 -11
Therefore,adj X=|-1 1 -1
-3 -1 5

pJ'W Properties of Determinants

We shall state some of the more obvious and
useful properties of determinants which simplify the
evaluation of determinants.

P-1. Ifevery element in a row or column of a

square matrix X is zero, then |X|=0.
xl 1 'xl 2 xl 3
If X=|x, Xx, X, |andeveryelement in the

REIRF D%
first row is zero, then

0 0
X = Xor Xy X3

| X1 X X3

o

Now | X|[=x,X, +x,X,, +x,X;
=0X,,+0X,+0X,=0

We get the same result if every element of
any other row or column is zero.

P-2.
matrix 4 are interchanged, then the determinant of
the resulting matrix is —|4|.

If any two rows or two columns in a square

If
xl 1 xl 2 xl 3 ‘x2 1 x22 ‘x23
X=|x, x, X,land Y=|x, x, X |isthe
X310 Xy Xa X3 X X3
matrix obtained by interchanging the first and
second row of X, then
X1 Xy X3
Yi=|x, x, x;

Xy Xy Xg3

=X (x12x33 — Xi3X3 ) Xy (xl X33 — X385 )
+ X3 (x11x32 =Xy X5 )

= X1 X1p a3 T Xy XXy T Xy Xy Xy + X X3y + X3 X Xy
= Xp3Xip X3y

= (X Xy X3 — Xy Xy Xy = X102, Xy + X5 05305, + 65X, X3,
—X;3XpXy ) = X .

P-3. If a square matrix X has two identical rows or
two identical columns then| X| =0

X X X3 Xy KXoy X3

If X=|x, x, x,l|and Y=|x, x, x,|are
‘x3 1 x32 x33 ‘x3 1 x32 ‘x33

the matrix

obtained by interchanging the first and second rows
of X. Then by property (3), | Y| = —|X]. But the first
and second rows of X are identical, mean X = Y and
so |X|=|Y]. Hence |X]=—|X]or2|X]=0 or |X] = 0.
The same result is obtained if any two columns are
identical.

P-4. Scalar Multiple Property

If every element of a row or column of a square
matrix X is multiplied by the real number £, then the
determinant of the resulting matrix is k|.X].

X X X3 kx,, kX, kx;
If X=X, X, Xyland Y=|x, X, Xy
Xy Xy Xy Xy Xy Xg3

is the matrix obtained by multiplying first row of X
by k. Then



kx,  kx, ki,
Y= Xy Xy Xy = ko X, + ko, X, + g X
X X X = k(x, Xy +x, X, +x3X,5)

31 32 33

=k|X]|
A similar result is obtained if any other row or
column is multiplied by k and ke R.

P-5. Sum Property

If every element of a row or column of a square
matrix X is the sum of two terms, then its
determinant can be written as the sum of two
separate determinants.

xll + yll x12 xl}
x21 +y21 x22 x23

Xy + Yy

If 1 X |=

X3y X33
Expanding by the first column, we have

| X|=(x11 +y11)X11 +(le +yzl)le +(x31 +y31)X31
= (X, X))+ X, X5, + x5, X5 )+ (0, X+ v X + 03 X))

X X X3 Y X X3
=Xy Xy Xpn | T Va Xpn Xy
Xy Xy X3 Va1 Xz X33

P-6. Property of Invariance

If every element of any row or column of a square
matrix is multiplied by a real number & and the
resulting product is added to the corresponding
elements of another row or column of the matrix,
then the determinant of the resulting matrix is equal
to the determinant of the original matrix.

Ri — Ri + (bR,
OR
Ci— G+ (b)C;
If
X X X3 X+ kg, x, X
X=|x, X, X,|then, Y=|x, +kx,, x,, X, |is
Xy Xy Xy Xy kg, X, X

the Matrix obtained by multiplying k& with every
element of the second column of X and then adding to
the corresponding element of the first column of X,
then
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xll + kle xIZ x13

| Y [=|xy, +hkxy, X, X3

Xy + ok, Xp, X

o (by property (5))
X X X3 12 X X3
=Xy Xy Xult A, X, X
Xy Xy Xy| o [k, X, X
X X X3 Xo X X3
S| Xy Xy Xyt klx, x, X,3| (by property 4))
Xy X3y Xy Xy Xy X33
X X X3
=Xy Xy Xyl Tt k(0) (by property (3))
Xy Xy X33
X X X3
=X Xy X =X
Xy Xz X3
P7. Triangle Property

This property of the determinant states that if the
elements above or below the main diagonal are zero,
then the value of the determinant is equal to the
product of the diagonal elements. It means for any
type of diagonal or scalar matrix, determinant is
simply the product of its diagonal elements.

For any square matrix X such that,

x, 0 0
|X|: X1 Xy 0
X X X

31 32 33

|X|=xn><x22><x33

P8. Transpose of Determinant (Reflection
Property)

Transpose refers to the operations of interchanging
rows and columns of the determinant. The rows
become columns and columns become rows in order.
It is denoted by |X|, for any determinant |X].
The property says determinant remains unchanged
on its transpose, that is, |X'| = |X].
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X X.

31

21

x22 x32

X33 Xzl Xy3 Xs3

|

X
X11= (—1)1+1 | 2

X32

X23 X33

Hence, X11=X11 and |X|=X!|.
2.4.1 Inverse of a Square Matrix.

In this section, we'll build on your understanding of
inverses from previous classes by exploring how to
find and use the inverse of a square matrix, which
plays a crucial role in solving matrix equations and
applying these concepts to real-world problems.

A. Inverse of a 2 X 2 matrix

Inverse of a Matrix

For an n X n matrix A, if there is a matrix A~ for
whichA™" A=1=A A, then A! is the inverse
of A.

From our previous class knowledge,

a
- |
C

inverse of A may be found by the formula

b
}is an non-singular matrix, then the

- 1 .
A 1 :7 ad] A
Dg[ Note 4]
(1) If A is non-singular, then A has an inverse.
(i1) Only square matrices possess an inverse.
(iii)

If a matrix A4 has an inverse, then 4! 4
=A447"'=1

3 -4 4,
Example@ If A= L a2 | find 47" and show
AA7'=1
Solution:

A= ‘f __;‘ =(3)(-2) - (1)(4)=6+4=-220,

| = o2 3

so A is non-singular and thus A" exists.

1
By above formula, we have 4 ™' = made , SO
A—l_l 5 4_1 -2
"l 37| 23
2 2
Now A47'4
_ L2 43 412 o 1o,
S 2[-1 31 -2] 2|0 -2] |01
Thus4~'4=1.
3 -4
Example IfA =L _2} ,Show that (47')" =
A.
Solution: By above example, the inverse of 4 is
given by
R L
47 =— =11 -3
-21-1 3 e
2 2
Since |47| =
b2 3) (1 3
3l=(1)] = | = (<2)=—+1=-——%0
2 ()(J(z} =3
2 2
we can find (47') ",
We have 3
-1 — 2
() == 2
‘A_ EER 1
20 2
-3
= 2
3 -4
= 1 B
2
Thus (4) =4
B. Inverse of 3x3 matrix

Now, Let 4 be a square matrix of order 3 x 3. If there
exists a square matrix Y of order n such that XY = YX
= I, where I, is the multiplicative identity matrix of
order n, then Y is called the multiplicative inverse of

Xand is denoted by X '. Thus XX '=X 'X=1 .



It may be noted that inverse of a square matrix, if it
exists, is unique. Moreover, if X is a non-singular
square matrix of order 7, then

XLI:Lade.
| X |
2 -1 2
Example@ LetX=| 0 2 —1|. Find X
21 0

Solution: Since X'= % adj X, we need to find

X|
adj X and | X |. First we find cofactor of every
element of X.

1+1 2 -1
X, =(-1) 1 0 =(1)(0+1)=1
1+2 0 -1
X,=(-1) i) 0=(—1)(0—2)=2
1+3 0 2
X13:(—1) i) 1‘:(1)(0"‘4):4
2+1 -1 2
X, =(-1) 1 0‘=(—1)(0—2)=2
2+22 2
Xp=(-1) b 0‘2(1)(0"‘4):4
243 2 -1
Xy=(-1) o1 =(-1)(2-2)=0
3+1_1 2
Xy=(=1" ) =)01-4)=-3
3+22 2
Xp=(=17| = (-1(-2-0)=2
3+32 -1
Xo=(= )0 = ((4+0)=4
1 2 -3
So, adiX=|2 4 2
4 0 4

Next, we find | X|.
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Since X =x, X, +x,X,, + XX,
=QMH+EHO+2)@
=2-2+8
=8#0 1 2 =3
1
Thus, X1=Ladj)(=— 2.4 2
| X1 8 4 0 4
11 3]
8 4 8
|1 1
4 2 4
1 4,1

@— Skill 2.2
Matrix Operations Proficiency:

e Verify the transpose of matrix products.

e Calculate determinants, minors, and cofactors for square
matrices.

e Recognize singular and non-singular matrices'
significance.
Understanding Properties of Determinants:

e Apply and prove properties of determinants for various
matrix operations.

e Evaluate determinants without expansion using

determinant properties.

B —— Exercise 22— 1
7 -4 4
1.If A=|2 0 =3 |.then
-1 2 -5

(i) Find M13, M31 and M23.
(ii) Find A11, A3z and A23.

(i11) Evaluate |4| by expanding across the second
row.

(iv) Evaluate |4| by expanding down the second
column.

2. Without evaluating state the reason for the
following equalities.
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1 3 0] 1 2 3
i [2 0 0[=0 (i) |-8 4 -12|=0
-1 3 0] 2 -1 3
1 3 -2/ 1 3 2
(i) 3 -1 1[=3 -11
2 1 4| |-21 4
320 320
(v) [I 1 -=3[==3]1 1 1
2 4 -6 2 4 2
10 <1l @1 o -1
v) 32 1=-1 -1 0
1 -1 0 |3 2 1
201 2 01
~vi) B 1 2/=5 5 6
1 2 201 2 2

3. Evaluate the following determinants:

01 3 3 4 -2
i |-1 2 1 (ii) 2 4 -6
2 11 -4 2 0
31 2 2 1 =3
(iii) 6 -5 4 (iv) 1 1 O
-9 8 -7 -2 3 4
81 82 83
3860 3861 .
{ } (vi) | 84 85 86
3862 3863
|87 88 89
4. Show that
a b c|lla | x
i |/ m n=b m y

X y zl|lc n z

a b c

a b c
(i) 1-3a 2-3b 3-3c|=1 2 3
4 5 6

4 5 6

1 1 1
i) |a b ¢
b+c c+a a+b
bc ca ab] |1 1 1
@iv) la b ¢ |=la® b

2 72 20 .3 13 3
a- b° ¢ la b ¢

=0

5. Identify singular and non-singular matrices.

X—y y—z z—x

i |y-z z-x x-y[=0
Z—X X-y y-z
1 a &

() |1 b b|=(a—b)b—-—<c)c—a)a+ b+ c)
1 ¢ ¢

[N

—a ab ac

(i) | ab —b* bc| =4a’b*c?
ac bc -
I+x y z
(iv) x l+y z |=l+x+y+z
X y  1+z
X P q
M |p x q|=G-px-g)x+p+q)
p q x
—a*> ab ac
i) | ab -b> bc | = 4aPb*c?
ac bc -’
1 2 1
6. Find x if the matrix {0 x 1 |is singular.
1 2 6

7. Identify singular and non-singular matrices.

1 2 -1 1 3 2
|4 0o -3 i [1 -1 5
1 -1 5 6 2 0



1 2 2 0 2 -1

Gii) |1 3 4 (iv) A=[0 -2 1

0 6 2 3 1 0
145 . Iy A

8. Let4 = Lz J. Verify that (A ) =(A )

9. Solve for x.

x+2 3 4
|2 x+2 4 |=0
2 3 x+4
10 1
(i) |¥* 1 x|=0
2 3 4

10. Show that if inverse of a square matrix exists,
then it is unique.

0 3 4
11LetA=|-4 2 6| Find 4.
2 0 5

12.Verify that (A4B) =B' 4" if

[0 ,fo
O A=lg S 850 o

1 5
. 3 21
(ii)) 4= L1 o4l B=|2 3

32

13.Determine whether B is the inverse of A.

i
O A=\, 5] 89,

2 0 3 4 0 -3
(i) A4=|5 1 7|, B=|1 1 1
3 0 4 30 2

14.Find the inverse of each of the following matrix.

|4 -3 . 0o -1 .. 1 x
O 2] @ o) o

15.Verify that (4B) '=B" 4™ if
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e

16.If A and B are non-singular matrices, then show
that

i) (4') =4 (i) (4B)'=B" 4"
cosa Sina .

17.1fA= { _ } then verify that
—Sina  cosa

AA=AA=1 .

v

Student Learning Outcomes —@

< Use row operations to find the inverse and the
rank ofa matrix

yA 8 Row and Column Operations

Building on your existing knowledge of matrices, this
chapter introduces row and column operations—key
techniques for transforming matrices to
algebraic equations. We'll explore how swapping,
scaling, and adding rows or columns simplify

solve

matrices and prepare them for further analysis.
2.5.1

In this
manipulation techniques used in linear algebra, such
as row swapping, scaling, and addition. These
operations are crucial for simplifying matrices,

Row operations on matrices.

section we explore essential matrix

calculating determinants, and solving linear equations
efficiently.

A. Elementary Row operations:

Any one of the following three operations performed
on matrices are called elementary row operations:

@) Interchange any two rows of the matrix.

(ii) Multiply every entry of some row of the
matrix by the some non-zero scalar.

(iii)  Add a multiple of one row of the matrix to
another row.
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We use the following representations to express the
elementary row operations (i), (ii) and (iii):

¢ Interchanging of row R; and R; is represented by
Ri(—) Rj.

¢ Multiplication of a row R; by a non-zero scalar £
is denoted by kR;.

¢ Adding k times R; to R; is expressed as R;+ kR;.

1 2 3
Example Let A=| 3 5 0 |perform the
-1 -4 9
following elementary row operations on 4.
(i) RR<R
(i) R —4R,
1 2 3
Solution: A=13 5 0
-1 -4 9
(i) RReR
-1 -4 9
=3 5 0
1 2 3
(ii)) R —4R,
1-4(-1) 2-4(-4) 3+4(9)
= 3 5 0
-1 -4 9
5 18 -33
=13 5 0
-1 -4 9

2.5.2 Column operations on matrices.

Column operations on matrices are analogous to row
operations, but they are performed exclusively on the
columns of a matrix. These operations are useful for
various purposes, such as simplifying matrices to a
more manageable form in solving systems of linear
equations, determining rank, and facilitating the
calculation of determinants.

Example@

Perform the following elementary column operations

1 2 3
ond=[3 5 0
~1 -4 9
i GG ) G-C
2 1 3
(i) CC: |5 3 0
4 -1 9
1 2-1 3 1 13
(ivy G,-C: |3 5-3 0|=[3 20
~1 —4+1 9| |-1-3 9

2.5.3 Echelon and Reduced Echelon Forms of
Matrices.

In this section, we'll learn about echelon and reduced
echelon forms of matrices, which help us solve
systems of equations and understand the structure of
matrices. We'll see how to use simple row operations
to simplify matrices and why these forms are useful
in math problems.

A. Gauss Elimination Method [ Echelon Form of a
Matrix. |

An m x n matrix X is said to be in (row) echelon form
(or an echelon matrix) if it satisfies the following
properties.

@) In each successive non-zero row, the number
of zeros before the leading non-zero entry

of a row increases row by row,
(ii)  Every non-zero row in X proceeds every zero

row (if there is any).

For example,

9 7 2 1 0 6 8
The matrices |0 1 6 4 |and|0 0 -7 |are
0 0 0 1 0 0 O

in echelon form,



S = O

(= e

— s~
[}
=]
o

0
But the matrices |0
0

S O o O
S O = ®
[e)

are not in echelon form.

B. Gauss Jordan Method [Reduced Echelon
Form of a Matrix.]

An m x n matrix X is said to be in reduced
(row) echelon form (or reduced echelon matrix) if it
satisfies the following properties:

(1) It is in (row) echelon form,

(11) The first non-zero entry in R; lies in C; is 1
and all other entries of C; are zero.

01 0 5
For example, the matrices | 0 0 1 6 |and
0 0 0 O
1 8 30
0 1 00 .
are in (row)
0 0 01
0 0 0O
01 0 3
reduced echelon formbut [0 0 1 6 |and
0 0 0 4
1 20
0 0 8 .
are not in (row) reduced echelon form.
0 00
0 00

2.5.4 Reduce a matrix to its echelon and reduced
echelon form

The procedure to reduce a matrix to its echelon and
reduced echelon form is illustrated in the following
example.

3 1 -5
Example ReduceA={2 1 -1]|to
1 -2 -5

echelon form and then to reduced echelon form.

Solution:

1=

U=

X

X

1=

=
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3 1 -5
2 1 -1
-1 =2 -5
1 L] by = R,
3 3
R 2 1 -1
-1 =2 -5
L
3 3
1 7
0 3 3 by R,— 2R,
-1 -2 -5 |
L3
3 3
0 1 7 |by 3R and R3+R;
0o -2 20
L 3 3
L3
3 3 3
0 1 7 |by §R3
0 -1 —4
L3
3 3
0 1 7 |byR:tR
LO 0 3
]
3 3
0 1 7 |by §R3 —>(1)
LO 0 1
0 —4
0 1 7]|byRi—=- R
0 0 1
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1 00 32 1|11 0 O
R0 1 7 |byRi+4R; Now, | 4 5 20 1 O
0 0 1] -1 2 =210 0 1
oo - -1 2 =210 0 1
RI0O 1 O|byR—7R3 ——(ii) R 200 1 0|R oR
0 0 1] 2 11 0 0
The matrices (i) and (ii) are in echelon form and 1 -2 20 o -1
reduce(.i echelon form of the given matrix A Rl4 s 200 1 0|by-r,
respectively. ~

3 2 1|1 0 O
2.5.5 Inverse and rank of matrices by means

of reduced echelon form. 1 =2 210

o

-1
A. Inverse of a Matrix: R0 13 -6/0 1 4|byR;—4RiandR3-3 R
Let A be a non-singular matrix. If we perform

successive elementary row operations on the matrix
[4 | 1], which reduced A4 to I and [ to the resulting

matrix A" i.e.if [4 | I] is reduced to [/ | 47'], then R0 1 T} 0 B B byE Ry
A7 is the inverse of 4. 0 8 -5/1 0 3
Similarly, if we perform successive elementary
column operation on the matrix [4 | /], which reduces 1 211 0 -1 |
A to I and I to the resulting matrix 4 ', then 4 "' is the -6 1 4
. RO 1 —10 — — |byR;—8R»
inverse of 4. ~ 13 13 13
Example Find the inverse of the matrix 0 0 -7 =8 7
i 13 |8 13 13
3 2 1 _
X=14 5 1 -2 211 0 -1
-1 2 -2 R|0O 1 1—36 0 % 2 | by-13%,
Solution: Since 0 0 -17l-13 3 _7
32 1 B
5 2 4 2 4 5
4 5 2|=3 N +1 .2 ~ -
12 -2 1 -2 211 0 -1
-6 1 4
Expanding by 1% row R1O 1 13 0 13 13 by ﬁRS
=3(-10-4) 2 (-8+2) + 1(8 +5) o 0 1|13 8 -7
=42+ 12+ 13 B 17 17 17
=—17%0

So, matrix X is non-singular and its inverse X '
exists.



1o Yl 2 3
13 13 13

rlo 1 %o L 2 lyrem
~ 13 13 13
00 1B o8 7
I 17 17 17
L0 o4 _6 1]
17 17 17

Rlo 1 o2 2 Zlpriln

~ 17 17 17 13

B8 1

00Ty 17 [And s

1“4 6 1

17 17 17

Thus, The inverse of X=X"= 6 5 2

17 17 17

B8 7

17 17 17

B. Rank of a Matrix

Let X be a non-zero matrix. The rank of an m X n
matrix X denoted by “rank (X ) is defined to be the
number of non-zero rows in the row echelon form
of X.

Example Find the rank of X =

0o 2 -1
2 -1 3
1 0 1
Solution: Since, X = 2 -1 3
0 1
1 0 1 1 1 4
2 -1 3
R R1 <~ R3
~10 2 -1
1 1 4
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1 0 1
0 -1 1

R 0 2 1 by R2— 2R and Rs — R
0 1 3
1 0 1
0 1 -1

Bl 2 (| R

=

by R3—2R> and Rs — R»

by R4 —4 R3

= =
| 1
oS o o =
o @ = o
PO
o
<
W | =
=~
W

by R+ Rsand R — R

o o o =2 o o o =

The number of non-zero rows of last matrix are three
so, the “rank of X is 3.

@— Skill 2.3
Matrix Row Operations Mastery:

e Perform row and column operations on matrices
proficiently.

® Reduce matrices to echelon and reduced echelon forms

effectively.




Chapter 9) Matrices and Determinants

B —— Exercise 23— 1

1. Reduce each of the following matrices to
the indicated form Echelon form

3 -1 0 1 0 -2

@l1 29 Gi) [2 1 -3

5 8 3 3 2 8
3021
11 53
e
2 1 4

2. Reduce each of the following matrices to the
indicated form Reduced Echelon form

2 -3 1] 0 23
M |1 12 (i) |3 -4 1
4 17 1 -1 2
3 8-1]
L1203
111
s s
4 19|

3. Find the inverses of the following matrices by
using elementary row and column operations.

3 2 2 5 -1 7
i |2 1 0 G | 1 3 4
-1 2 4 -1 5 1
7 2 3 3 -7 6
Gi) |1 0 1 )2 1 0
1 3 1 1 -3 5

4. Find the ranks of each of the following

matrices.

1 0 -3 3 1 -4
@) 2 2 1 g (0 2 1
-1 2 3 2 -1 =2
53 1 41 -2
4

21 0 .
(iii) (iv) |4

5 2

-1 3 5

&

Student Learning Outcomes —@

< Explain a consistent and inconsistent system of
linear equations and demonstrate through examples

< Solve a system of 3 by 3 nonhomogeneous linear
equations by using matrix inversion method and
Cramer's Rule

< Solve a system of three homogeneous linear
equations in three unknowns using the Gaussian

elimination method

Solving System of
A | inear Equations

A system of equations is a collection of equations that
we deal with altogether at once. A simple linear
equations system consists of two equations and two
variables. There are two kinds of equations.

(1) Homogeneous equations
(i1) Non-homogeneous equations

2.6.1 Homogeneous and
equations.

non-homogeneous

Consider the equation a1 x1+ a2x2=k ——>(i)

where a, and a, are not simultaneously zero. The
equation (i) is known as a non-homogeneous linear
equation in two variables (or unknowns) x; and x;.

Now consider the following two non-homogeneous
linear equations in two variables x; and x».

ax, +a,x, = kl} .

—> (ii)

bx, +b,x, =k,
If we take k= 0 in equations (i), then it takes the form
arx1tax=0 —> (i)
This form of linear equation is known as a
homogeneous linear equation in two variables x; and
x2. If we take k1 = k2 = 0 in (i1), then

ax, +a,x, = 0} (iv)
_

bx,+bx,=0
is known as a system of homogeneous linear
equations in the variables x; and x».



Similarly, the following equation,

aix) + axx; + asxs ky where a, b, ¢c#0, and k

0 —>(v)

is known as a non-homogeneous linear equation in
three variables xi, x> and x3 and the following is a
system of three non-homogeneous linear equations in
three variables x1,x2 and x3.

ax, +a,x, +a,x, =k
bx, +bx,+bx, =k, p ————> (i)

X, +6,x, +ox, =k,

together form a system of non-homogeneous linear
equations in three variables xi, x> and x3.

If we take &= 0 in (v), then
axi + axz + asxs= 0 — > (vil)

is known as a homogeneous equation in three
variables x1, x2 and x3.

If we take k, =k, =k, =0 1in (vi) then

ax, +a,x, +a,x,; =0
bx, +b,x,+bx,=0 —> (viii)
X, +c,x, +¢x, =0

is called system of homogeneous linear equations in
three variables x1, x2 and x3.

An order triple (¢, t,, ¢;) is called a solution

of system (vi) if the equations are true for x; =1¢,
x2=t, and x3 = t, . The solution set is denoted

by S={(#,,t,, t;)}. In the case of system (viii),

we see that itis always true forx;=¢,=0, x2=¢,=0
and x3=¢ =0, so the order triple (¢,, ¢,, t;)=(0,0,0) is
a solution of the system. Such a solution is called the
trivial (or zero) solution and any other solution,

if it exists, other than trivial solution is called
a non-trivial (or non-zero) solution of the system.

[
In writing the augmented matrix of a linear system enter

zero (0) whenever a variable is missing in the equations,

Note

so, the coefficient of the variable is zero.

Consider system (vi). Since
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a,x, + a,x, + a,x, a

: a
bx,+bx, +bx,|=|b b, b | x,

CX, + CX,y + C3 Xy ¢ G G| X

the system (vi) may be written as a single matrix

equation
al aZ a3 Xﬁ kl
b b, by |x,| = |k — > (ix)
cl CZ c3 XB ké
or AX=B —>x)
a, a, a, X, k,
where, 4= |b b, b,|,X=|x,|andB = |k,
cl c2 c3 x3 ké

A 1s called the matrix of coefficients, X is the column
vector of variables and B is the column vector of
constants.

If we adjoin the column vector B of the constants to
the matrix 4 on the right separated by a bar, that is

al aZ c3 kl
[4|B] = |b, b, b|k,|, the new matrix so
c3 c3 C3 ké

obtained is called augmented matrix of the given
system.

2.6.2 Solve a system of three homogeneous linear
equations in three unknowns

(i) Solution of homogeneous linear equations

Consider the following system of three
homogeneous linear equations
@, X, +a,x, +a,x, =0 (i)

Ay X, + Ay X, + a5, =0 (ii) —>(D

a, X, + ay,x, +a;x, =0 (iii)

which is equivalent to the matrix equation

a, 4, 4a; X 0
a, a, a; x, |=10]orsimply AX =0,
a, a a X3 0

31 32 33
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a; 4, dg X 0
where 4=|a,, a,, a,,| ,X=|x,|andO =0
a;; dz, A X3 0

If |4|# 0, then A is non-singular and 4 ~' exists.

Wehave A ' (AX)=47'0 = A 'AHX=0=1X=
0 = X=0, thatis
X, 0
x,|={0] orx, =0,x, =0andx; =0. This shows
X, 0
that the system has trivial solution. So, we may

conclude

“A system AX = 0 of three homogeneous linear
equations in three variables has a trivial solution if A
is non-singular i.e. |A| # 0.

Next we find the condition under which the system (I)
has a non—trivial solution. Multiplying equations (1),

(i1) and (i11) of the system by the co—factors 4,,, 4 ,,
and 4 ,, of the corresponding elements a,,, a,,and a
;; and then adding them up, we get

(a, A, +a, A, +a, 4, )x, +(a, A4, +a,A, +a,4, )x,
+ (a4, + a4, + a4, )x, =0

From this, we have |4[x,= 0. Likewise, we can have
|A|x ,=0and |4|x ; =0. The system (1) has a non-trivial
solution if at least one of the variable x,, x, and x is
different from zero. Suppose x, # 0, then |[4]| x, =0
= |A|= 0. Thus, we may conclude:

“A system AX = 0 of three homogeneous linear
equations in three variables has a non-trivial solution
if it is singulari.e. |A| = 0"

Example Show that the following system has

a trivial solution.
2x,+3x,—3x,=0 —> (i)
x,+2x,—2x,=0 —> (ii)

X, +2%,+2x,=0 5 (i)

Solution: Since

233 2 =2 =2 ho2
=1 2-2 =2‘ _‘—3‘ _‘—3‘ ‘
1 2 2

1 2 2

=2(4+4)-32+2)-3(2-2)

=16 — 12 = 4% 0, the system has a trivial solution.
Subtracting equation (iii) from (ii), we get x; = 0 by
putting x; = 0 in (i) and (i1) then subtracting equation
2x(ii) from (i), we have x,= 0. Putting x, =0 and x,
=0 in equation (i) we obtain x; = 0, and therefore x,
=0, x,= 0,x,= 0 and the system has only trivial
solution.

Example Show that the system ha non-trivial

solution

X +x,+x=0 —> (i)
x,—x,=0 — > (i)
x+2x,=0 SN (1 1))

Solution: Since

1 1 1
|[Al =11 1 —1|= 0, the system has a non-trivial
1 2 0

solution. Using equation (ii), we get
Xy =Xx3 ——>(1v)

Using equation (iv) in (iii),

Xy +2x3=0

Xy = —2Xx;

We get that x; =-2¢, x, =t and x; =¢ where ¢ is ant

real number. Thus, the given system has infinitely
many solutions.

Example @ For what value of A the system has
a non-trivial solution. Solve the system for the value
of 1.

X +x,+2x,=0

2x,+x,+Ax; =0

3x,+x,+2x,=0



Solution: First we find the value of 4. We have

1 -1 2
A= 1 Al
31 2
1 -1 2/t 0 0
|A|=2 1 2]=2 3 21-4
So 31 2[3 4 -4
1P /1_4=—12—4(,1—4)=4—4,1,
4 -4

We know that the system has non-trivial solution if
|4|=0, thatis 4 —4 1 =0 or A =I. Substituting the value
of A4 into the system, we have

X +x,+2x,=0

2x,+x,+x,=0

3x,+x,+2x,=0
Now solving the first two equations, we get x, =—X,.
Putting this value in the third equation, we obtain
—-3x; + x, + 2x; = 0 which x, = x3. We see that x,

=—1t, x, =tand Xx; =t satisfy all the three equations

of the system for any real value of t. Thus, the given
system has infinitely many solutions for A =1.

2.6.3 Consistent and inconsistent system of
linear equations

(1) A system of linear equations is said to be
consistent if the system has only one (i.e.
unique) solution or it has infinitely many

solutions.
(i1) A system of linear equations is said to be
inconsistent if the system has no solution.
A. Consistency criterion for a system

To find the criterion for a system of linear equations
to be consistent or inconsistent, we consider the
following three systems of linear equations in three
variables.
2x,4+2x,—x,=4
x+x,=0 —> ()

X —2x,+x,=2
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—X, =X, +2x,=1
X —2x,+x,=2 —> (D)

x,—5x,+4x,=5

X, —2x,+3x;, =1
—2x, +5x, —4x, =2 —> (11D

X —4x,—x,=5
We solve these systems now by performing the
elementary row operations on the augmented matrices
of these systems so that to reduce them to (row)
echelon form.

1. Consider system (I). the augmented matrix of the

systems is
2 2 —1l4]
1 1 0}0
1 -2 1[2]
1 =2 1|2]
then R|{1 1 0/0 |byR, <& R,
2 2 -1/4]
1 =2 1]2
R0 3 -1|-2|byR;-2R and R;—R,
0 6 =310
1 =2 1]27
. | )
RO 1 —|—Z|by—-R
K 313 y 2
0 6 -3/0|
1 =2 1|27
. | )
B 0 1 ?? bYR3—6R2
0 0 —1/4
1 2 1|27
-1(-2
RI0O 1 —|—=|by—R
= N
0 0 1|-4
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_1 . 1127 X —2x,+x,=2 —> (1)
313 —x, +x, =1 —> (i)
-1|-2
R0 1 313 by Ri +2R, Ox,=0 —> (iii)
00 1|4 Equation (iii) is obviously satisfied for all choices of
- - x,. Equations (i) and (ii) yield
1 0 02 | | X, =2+2x, — X, — (iv)
R|{0 1 O-2|byR:+ —Rsand Ri — —R;3
- 3 3 x,=x-1 — (V)
10 0 1|4
Since x; is arbitrary, from equations (iv) and (v) we
Thus, the solution of th temis x, =2, x, =2 e .
us, the sotu 1'on oF the System 1S 4 .xz o can find infinitely many values of x, and x,. This is
and x; =—4. Since the system has a solution, so it is equivalent to saying that the system has infinitely
consistent. many solutions. Thus the system is consistent.
? Remember 3. Consider system (III). The augmented matrix of
Two systems of equations are said to be equivalent the system is
if they have the same solution set. 1 =2 3|1
2. Consider system (II). The augmented matrix =2 5 42
of the system is I -4 -1} 5
-1 -1 2]l 1 -2 3|1] [t =2 3)i
1 =2 112 then -2 5 —4[-2|R|0 1  2|0|byR,+
1 =5 4|5 1 -4 -1| 5 0 —2 —4/4
12 12 R, andR,~R,
then R |-1 -1 2/1|byR, <> R, 1 - 31
L1 =54 R|0 1 2]0|byR,+2R,
1 - ] 0 0 0}4
R0 =3 3| by Ro+ Riand Rs — Ry The system (III) is reduced to the equivalent system
0 =3 33 X —2x,+3x, =1 —> ()
-2 12 X, +2x,=0 ———> (i)
R |10 -3 313 byRi—Rx
- We see that the equation (iii) has no solution.
I -2 172 1 Therefore, this system of equations has no solution.
R0 -1 11|by 3 Ra. Hence the system is inconsistent.
0 0 0ol From the above, we note that system of linear

equations may have no solution, have only one

The system (II) is reduced to the equivalent system
solution, or have infinitely many solutions.



2.6.4 Solution of System of 3 X 3 Non-
homogeneous Linear Equations

A system of non-homogeneous linear equations can
be solved by using the following methods:

(a) Matrix Inversion Method i.e. AX=B= X=4"'B
(b) Gauss Elimination Method (Echelon Form)
(c) Gauss—Jordan Method (Reduced Echelon Form)
(d) Cramer’s Rule.
(a) Matrix Inversion Method:
Consider the following system of three non-
homogeneous linear equations in three variables x,,x,
and x;.

a, X, +a,x, + a,x, =k,

Ay X, + a,,X, + a,,x;, =k,

a5 X, + a3, X, + ayx; =k,
This system is equivalent to the matrix equation.

a, 4, 453 X k,

a, a, a, X,|=|k,|or AX =B, where

a; 4y Ay X k,
a4y 4 X k,
A=|a, a,, a,| ,X=|x,| and B=|k,
a; 4y Ay X3 k,

If 4 is non-singular, then 4 ™' exists. So, we have

AX=B=>A"'"(AX)=A"'B=(A"'4)X
=A'B=>IX=A'B=X=4"'B.

Therefore, the matrix of variables is now determined

as the product of 4 ' B.

The method discussed above for finding the solution

of a system of non—homogenous linear equations is
known as matrix inversion method.

Example Solve the system of equations by

matrix method inversion method.
3x,—2x,+5x,=5
x+x,-3x,=0

X +x;="7
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Solution: In matrix form
3 -2 5||x 5
I 1 =3||x,|=10

10 1f|x| |7

AX=B
X=A"'B
Since, A = jAdj A —>(>)
So,
3 -2 5
-2 5 3 5 3 =2
A=l 1 —3|=1 0 1
o0 1 1 -3 1 -3 1 1
—1(6-5)— 0(-9-5) + 1(3 +2)
—1-0+5
=6=0
So, A 'exists.
All AIZ Al3
Adj A=|4, 4, A,
A3l A32 A33
1 -3
A =(—1)" —1(140)=1,
0 1
1 -3
A=~ 1‘:—1(1+3)=—4
1 1
A13 Z(_I)HS = 1(0_1)2_1:
1 0
-2 5
A, = (—1 —1(=2-0)=2,
0 1
35
Ay =(-1)""? 1 1‘21(3—5)=—2,
3 =2
A23=(_1)2+31 0‘=—1(0+1)=—2

-2
4, = (_1)3+1 |

5—1(6 5)=1
3_ ]



3
A32 — (_1)3+2 1

3
A33 — (_1)3+3 1

Now,

1
Adj A=|—-4
-1
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3|2 (-9-5)=14
3l -

1‘:1(3+2)=5

2 1
-2 14
-2 5

By putting the valueS in equation (i), we get

1
6
P
6
1
i 6
But
X=4"'B
11
6 3
.2 1
3 3
b1
L 6 3
e
=13
5
That is
xl
X, |=
X3

Thus,x, =2, x,=13, x,=35 which is the solution

of the given system.

| | |
AN N NN

1 1
6 6 3
42 1
6 3 3
S|t ot
6_ _6 3
T
— 5
6
Z><O
3
317
61 [
2
13
5

Al W |~

[9— Note
The matrix inversion method for solving a
system of non-homogeneous linear equations is
applicable only when the co-efficient matrix A is non-
singular i.e. |[4] # 0.

(b) Gauss Elimination Method (Echelon Form)

We are already familiar with the method for
reducing the augmented matrix of a system of non-
homogeneous linear equations to echelon form. We
now apply this method to find the solution of a system
of non-homogeneous linear equations. The procedure
is known as Gauss Elimination Method.

Example@ Solve the following system by the

Gauss Elimination method.
2x,+2x,—x, =4
x+x,=0
X —2x,+x,=2

Solution: The augmented matrix of the given

system is
2 2 -1|4
I 1 0|0
1 -2 1|2
1 -2 12
Then R 1 0(0 ByR,© R,
2 2 -1/4
-2 1|2
R 3 -1/-2|ByR2—Riand R,—2R,
0 6 -=-3|0
1 -2 1]2
1
Rlo 1 -1l -2|By g,
~ 31 3 3
0 6 -3(0



1 -2 1|2
RO 1 _hz By R;— 6R,
~ 3| 3

0 0 -1]4

So, the equivalent system of echelon form is
X —2x,+x,=2 — (1)
—> (ii)

—> (iii)
From the above equation (iii), x ; = —4, putting this
value to the equation (i1), we get x ,= —2. Now,
putting x ,=—2 and x ; = — 4 in equation (i) to get x,
=2.

Thus x, = 2, x,= — 2, x ;=—4 is the solution of the

given system.

(c) Gauss—Jordan Method (Reduced Echelon
Form)

Consider system of equations in example
2.25 and the echelon form

1 -2 1|2

0 1 -—1-2
31 3

0 0 -1]4

We reduce the above augmented matrix to reduced
(row) echelon form, that is

1 -2 1] 2
Rlo 1 12 |By-g,
~ 3| 3
0 0 1|4
1 o 12
303
R0 1 _L2 By R+2R>
~ 30 3
0 0 1 |-4
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10 02 | |
R0 1 0/-2|By Rt Raand Ri= Ry
0 0 1|-4

The equivalent system in the reduced (row) echelon
form is

x =2, x,=-2 and x,=-4

which is solution of the given system.

The procedure illustrated above of transforming a
system of non—homogeneous linear equations into an
equivalent system in the reduced (row) echelon form

from which solutions are easy to obtained is called the
Gauss—Jordan Method.

(d) Cramer’s Rule

Consider the following system of three non-
homogeneous linear equations in three variables.
a,X, + X, + a;,%, =k,
a, X, +ayx, +ax, =k, p ——> (1)
a3 X, + Ay Xy + ayx; = ky

which is equivalent to the matrix equation

AX =B coeveenennanens (i1)
a, a, a;, X, k,
where A=|a, a, ay,l|, X=|x,|andB= |k,
ay 4y Ay X3 k;
Thus koa, a
k, a, a,
X = kA, + kA, + kA, |k an a
| A] | 4]
a, k a;
a, k, a,
X, = ki, +ky Ay + kA, |4 ky, a,
| 4] | A]
a, k, k
a, ky, k
X, = kA +ky Ay + ks Ay |ay ky, k
| 4] | A

This method of finding the solution of the system is

called Cramer’s Rule.
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4 —Interesting Information

The use of matrices in solving equations dates back to
ancient China, where the mathematician Liu Hui used
them in the 3rd century AD to solve systems of linear
equations. The formal development of matrix theory
began in the 19th century with the work of Arthur
Cayley and James Joseph Sylvester. They introduced
matrix notation and operations, which revolutionized
mathematical computations. Today, matrices are
fundamental in numerous fields, including
engineering, physics, economics, and computer
science, enabling efficient and systematic solutions to
complex problems.

539 14-15-9
416 10-11-6
134 1112 7

Mmom

Note

Gll

o

NgwN

>

the Cramer’s Rule is also

9
(i)Like matrix method,
applicable only when |[4]|# 0

(ii)Cramer’s Rule is simpler than matrix method for

finding solution of the given system. \

Example Use Cramer’s Rule to solve the

following system.

2x,+x,—x,=5
2x,+3x,—x,=0
X +x,=8

Solution: The above system of equation in matrix
form is

21 -1 [x] [5

2 3 ~1f |x,[=|0

111 0] |x 8

2 1 -1 X, 5
A=|2 3 -1|,X=|x, andB= 0
1 1 0] X, 8

1 -1 2 -1 2 1
|A|=1 -1 +0
3 -1 2 -1 2 3
=1(-1+3) - 1(-2+2) + 0(6-2)
=2-0+0
] =2
Now,
k alZ al}
k a22 a23
_ k; a, a,
X, =
Now, |A|
51 -1
03 -1
8 1 0 ) o
= 5 (Expanding with 3™ row)
1 -1 |5 -1 51
8 -1 +0
_ B3 - o -1 0 3
2
_8(=1+3)-1(-5+0)+0
2
_ 1645 :22101
2 2 2
a, k a;
a, k, a,;
X :_a3l k3 a33
L
25 -1
2 0 -1
1 8 0 _ o
= 5 (Expanding with 3 row)
5 -1 2 -1 2 5
1 -8 +0
10 -1 2 -1 2 0

_1(=5+0)-8(-2+2)+0(0-10) _ 5

2 2



all a12 kl
a21 a22 k2
x=a31 a32 k}
’ | 4]
215
230
118 , o
= (Expanding with 3" row)
I 5 125 2 1
1 -1 +8
_ B o 2 0 23
2
_ 1(0-15)-1(0-10)+8(6-2)
2
_ —15+10+32
2
_27_ 131
2 2
1

Therefore, x, =10—, x, = —2l and x, = 13l is the
2 2 2
solution of the given system.

@— Skill 2.4
Systems of Linear Equations Problem-Solving Skills:

e Differentiate between homogeneous and non-
homogeneous equation systems.

e [dentify consistent and inconsistent equation systems.

e Utilize multiple methodologies to solve equation
systems efficiently.

B— Exercise 24— 1

1. Solve the following systems of equations by

matrix inversion method.

(1) 3x,—6x,+x,=12 (i) 2x,+x,+x,=4
S5x,+x,—4x,=-3 X, +3x,-2x,=3

X, +2x,-2x,=2 2x,+x,+2x, =1

X, +4x,+3x;,=8
(iii) TX, +x,=2
4x,+3x,=9
2. Solve the following system of equations by the
Gauss elimination method and Gauss—Jordan method.
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(1) 3x-3y+4z=0 (i) 4x-3y+2z=0

x+y—4z=4 3x-2y—-2z=2

3x+4y—-2z=-13 X+2y+52z=17
(i) 2x,—x,=7
x+3x,=9

x+x,—-x,=4

3. Use Cramer’s rule to solve the following system
of equations.

(1) x—2y=-4 (1) x—-y+2z =10
3x+y=-8 2x+y—-2z=-3
2x+z=-7 4x+y+z =8

(iii)  2x,+3x, +4x,=5
X, —2x,="7
4x,—x,=8

4. Solve the following system of homogeneous

equations.
(1) 4x,—x,+x; =0 (i) x,+6x,—-8; =0
3x,+2x,—x; =0 —8x,;+x,-2x,=0

2x,+ x,+3x;=0 -x+7x,+3x,=0

9]

For what value of 4 the following system of
homogeneous equations has a non-trivial
solution. Solve the system.

x,+5x,+3x, =0
Sx;+x,—-Ax;,=0
x, +2x,+ 21x,=0
6. Circuit Analysis Consider the circuit shown in the

figure. The currents I, I, and I3, in amperes, are the
solution of the system of linear equations.

21, +4I, = E,
L, +41,=E,
L+1,—1,=0
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Where E: and E: are voltages. Use the Either
Cramer’s Rule or Matrix Inversion to find the

unknown currents for the voltages E;= 14 volts and

E> =28 volts.

Student Learning Outcomes —@I
< Apply concepts of matrices to real world
problems such as (graphic design, data encryption,
seismic analysis, cryptography, transformation of
geometric shapes, social network analysis)

Application of

P Matrices in Real Life

Matrices are not just abstract mathematical concepts;
they are powerful tools used in various real-world
applications. From the intricate designs in graphic arts
to the complex algorithms in data encryption,
matrices play a crucial role. They help in analyzing
seismic data for predicting earthquakes, transforming
geometric shapes in computer graphics, and even in
understanding social networks. This section explores
how the fundamental concepts of matrix
multiplication, inverses, determinants, and Cramer's
rule can be applied to solve practical problems in
these diverse fields.

Use the information given in the table to set up a
matrix to find the camera sales in each city.

Cryptography

A cryptogram is a message written according to a
secret code. (The Greek word kryptos means
“hidden.”) Matrix multiplication can be used to
encode and decode messages. To begin, you need to
assign a number to each letter in the alphabet (with 0

assigned to a blank space), as follows.

0=_ | 9= 18=R
1=A 10=J 19=S
2=B 11=K | 20=T
3=C 12=L | 21=U
4=D 13=M | 22=V
5=E 14=N | 23=W
6=F 15=0 | 24=X
7=G 16=P | 25=Y
8=H 17=Q | 26=Z

Then the message is converted to numbers and
partitioned into uncoded row matrices, each having
entries, as demonstrated in the Following Example

Example @ Forming Uncoded Row Matrices

Write the uncoded row matrices of order for the

message

MEET ME MONDAY.
Solution:
Partitioning the message (including blank spaces, but

ignoring punctuation) into groups of three produces
the following uncoded row matrices.

[13 5 5][20 013][5 0 13][15 14 4][1 25 0]
MEE T M E M O NDAY

Note that a blank space is used to fill out the last
uncoded row matrix. To encode a message, use the
techniques demonstrated in the following examples

“The Inverse of a Square Matrix” to choose an
invertible matrix such as n x n”

1 -2 2
A=|-1 1 3
1 -1 -4

and multiply the uncoded row matrices by (on the
right) to obtain coded row matrices. Here is an
example.



Uncoded Encoding Matrix A Coded
Matrix _
1 2 2
[13 5 5] |-1 1 3 |=[13 -26 21]
1 -1 -4

Example Encoding a Message

Use the following invertible matrix to encode the

message MEET ME MONDAY.
I -2 2

A=|-1 1 3
I -1 -4

Solution:

The coded row matrices are obtained by multiplying
each of the uncoded row matrices found in Example
2.28 by the matrix as follows.

Uncoded

Matrix Encoding Matrix A1 Coded Matrix

So, the sequence of coded row matrices is

[13 -26 21][33 =53 —12][18 —23 —42][5 —20 56|

[-24 23 77]

Finally, removing the matrix notation produces the
following cryptogram

13-26 2133-53 —12 18-23-42 5-20 56 24
23 77
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Decoding a Message

For those who do not know the encoding matrix
decoding the cryptogram found in Example 2.29 is
difficult. But for an authorized receiver who knows
the encoding matrix decoding is simple. The receiver
just needs to multiply the coded row matrices by (on
the right) to retrieve the uncoded row matrices.

Here is an example.

Coded

Example

Use the inverse of the matrix

Uncoded

1 -2 2
A=1|-1 1 3 |toDecode the cryptogram
1 -1 -4

13-26 21 33 -53 —-12 18-23 42 5-20 56-24 23 77
Solution:

Coded Matrix Decoded Matrix A Decoded
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First find A™! by using the techniques demonstrated in
the section entitled “The Inverse of a Square Matrix.”
A'is the decoding matrix. Then partition the message
into groups of three to form the coded row matrices.
Finally, multiply each coded row matrix by A™! (on
the right).

So, the message is as follows

[13 5 5][20 0 13][5 0 13][15 14 4][1 25 0]
MEE T ME M ONDAY

Example Matrices and Digital Photography

The letter L in Figure is shown using 9 pixels ina 3
x3 grid. The colors possible in the grid are shown in
Figure . Each color is represented by a specific
number: 0, 1, 2, or 3.

The Letter L

white Eight graﬂ Dark grai Black
1 2 3
Figure 2.1

a. Find a matrix that represents a digital photograph
of this letter L.

b. Increase the contrast of the letter L by changing
the dark gray to black and the light gray to white.
Use matrix addition to accomplish this

Solution:

a. Look at the L and the background in Figure 2.1
Because the L is dark gray, color level 2, and the
background is light gray, color level 1, a digital
photograph of Figure2.1 can be represented by the

matrix
2 1 1
2 11
2 21

b. We can make the L black, color level 3, by
increasing each 2 in the above matrix to 3. We can
make the background white, color level 0, by
decreasing each 1 in the above matrix to 0. This is
accomplished using the following matrix addition:

Changing contrast: the letter L

Figure 2.2
2 11 I -1 -1 300
2 1 1|+|/1 -1 -1{=|{3 0 0|The picture
2 21 1 1 -1 330

corresponding to the matrix sum to the right of the
equal sign is shown in Figure 2.2.

Example @

The quadrilateral in Figure 2.3 can be represented by
the matrix. Each column in the matrix gives the
coordinates of a vertex, or corner, of the quadrilateral.
Use matrix operations to perform the following
transformations:

”]A
> 3
/! 5}
3
/
flzl,
R DEEIIN RSP ERE
/ 15
=] 1,12
2, B) |4
I~
6
7
V.
y
Figure 2.3

Coordinates of
vertices

vovov oy

A= [—2 —1 3 1 ]47 x-coordinates

-3 2 4 -214¢—— y-coordinates

a. Move the quadrilateral 4 units to the right and 1
unit down.

b. Shrink the quadrilateral to half its perimeter.

-1 0
c.Let B= {0 J . Find BA. What effect does this

have on the quadrilateral in Figure2.3?



Solution:

a. We translate the quadrilateral 4 units right and 1
unit down by adding 4 to each x-coordinate and
subtracting 1 from each y-coordinate. This is
accomplished using the following matrix addition:

—2—131+4444_2375
32 4-2] |-1-1-1-1| |-413-3

Each column in the matrix on the right gives the
coordinates of a vertex of the translated quadrilateral.
The original quadrilateral and the translated image are
shown in Figure 2.4.

A
s, ala
‘)’)
B (7.3
VAR
1.2 I B 3,1 /
Xe »x
T -6->5-4-_3-_ I__l / 4 3
/15 |
=12
=2, —B) 14 1 (& 12
5 VRN
O
7.
v,
y
Figure 2.4

b. We shrink the quadrilateral in Figure 2.3,shown in
blue in Figure2.5 to half its perimeter by multiplying
each x-coordinate and each y-coordinate

by % . This is accomplished using the following

scalar multiplication:

1
1[—2 13 1} b3 %
21-3 2 4 2 _312_1
2
Each column in the matrix on the right gives the
coordinates of a vertex of the reduced quadrilateral
The original quadrilateral and the reduced image are

shown in Figure 2.5. y
-
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|
\7/ LK
\
N

AN

(1}=2)

N

ul

T 5
N in
*/ ]

—
t
!
=

DO —
|

N’

N U
<

N
Figure 2.5
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¢. We begin by finding BA. Keep in mind that 4
represents the original quadrilateral, shown in blue
in Figure 2.6

Y
74
g
(GEED 34
3
Al 2 1,2
TN
xj———:——X_l ) T » X
[ \
2 13 (2,8)
1 AN
< A}
G132 ] |ai=2)
7
\A
y

z[(-l)(-2)+0(—3) (=)(=1)+0(2)

0(-2)+1(-3)  0(~1)+1(2)

(=1)(3)+0(4) (—1)(1)+0(—2)}
0(3)+1(4)  o(1)+1(-2)

_[2 1 -3 —1}
32 4 =2

Example @

Table represents the number of active users (in
thousands) on various social media platforms in four
Pakistani cities:

City Facebook | Twitter | Instagram
Karachi 150 80 120
Lahore 110 70 90
Islamabad | 90 50 80

the average time spent on each platform in these cities
is as follows (in minutes per day):
Facebook: 40 minutes ; Twitter: 30 minutes

Instagram: 45 minutes. Calculate the total time spent
on each social media platform in each city

Solution:

Multiplying the number of active users with the

average time spent on each platform:
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150 80 120 Matrix in Computer Graphics
[40 30 45]|110 70 90
90 50 &0 I
. Yk
=[6000+3300+ 4050 3200+ 2100+ 2250 ,_l%_,
5400+ 2700 +3600] k=1, k=1 (Unscaled)
Total Active Facebook Users = 6000 + 3300+ 4050 L ]
=13350 L= , ‘
Total Active Twitter Users = 3200+ 2100+ 2250 k=175, {=0.75‘ k=15,k=225
=7550
Total Active Instagram Users = 5400+ 2700 + 3600 Solution:
=11700 1. Represent the Vertices as a Matrix:
Total Social Media Users =[13350 7550 11700]
Total Minutes Spend in every City Original Matrix: A= {1 33 }
2 46
City Facebook | Twitter | Instagram
Karachi | 6000 | 3200 | 5400 2. Scaling Matrix:
Lahore | 3300 | 2100 | 2700 Scaling by 2: § = {2 0}
' 2
Islamabad 4050 2250 3600 0

3. Apply the Transformation:
New Matrix: A'=SxA

Remember that we are multiplying a 1 x 3 matrix with
a 3 x 3 matrix and hence we get a 1 X 3 matrix.

2 0| |1 3 5
i i A= x
Example@ Transformation of Geometric {0 2} L 4 6}
Shapes
P .12 6 10
Problem Statement: Consider a 2D shape with 4= 4 8 12
vertices at points (1, 2), (3, 4), and (5, 6). Apply a
scaling transformation to double the size of this
shape.
Remember:
Transformation Matrix Representation Description
- Sx 0 Scales a shape by a factor Sx in the x-direction and
Scaling . L
0 Sy Sy in the y-direction.
(10
About x-axis: 0 —1 About y-
Reflection Lo Reflects a shape across the x-axis or y-axis.
axis |




Matrices and Determinants Chapter 2

Conclusion: The new vertices of the scaled shape 4. Reflect a point (5, 7) across the x-axis using a
are (2, 4), (6, 8), and (10, 12). matrix.
Example Data Encryption Using Matrices 5. Naveed and Sharjeel enroll in a Pakistani

University A and the other university B, each with

Problem Statement: Encrypt the message "HI" its own unique fee structure. They consider the

using matrix multiplication. Let 'H' =8 and T =9, number of credit hours they're taking and the cost

and use the encryption matrix £ = 3 per credit hour for the academic year 2022-2023
-7 5 focusing on tuition expenses only.
Solution: University A | University B
1. Represent the Message as a Matrix: Naveed 6 9
g Sharjeel 3 12
Message Matrix: M = L}
Cost Per Credit Hour
2. Apply the Encryption Matrix: University A 35000Rs
Encrypted Message: M—ExM University B 42000 Rs
M = { 1 3} x{ 8} (a) Write a matrix A for the credit hours taken by
-7 5/ L9 each student and a matrix B for the cost per credit
hour.
, 8+27 35
“_an445 7| 3 (b) Compute AB and interpret the results.

6. There are two shops in your area. Your shopping
list consists of 2 kg of tomatoes, Skg of meat, and

by the matrix {35} 3 liters of milk. Prices differ between the different
3 shops, and it is difficult to switch between shops

Conclusion: The encrypted message is represented

to make certain you are paying the least amount

71— skill 2.5
T v of money. A better strategy is to check where you

Real-world Application Proficiency:

e Apply matrix operations and solution methodologies to pay less on average. The prices of the different
real-world problems involving linear transformations items are given in the table. Which shop should
and modeling you go to?

——— Exercise 2.5 s Product Price in shop A Price in shop
Tomatoes PKR 166/kg PKR 158/kg
1. chle a poin.t (3, 5) in an image by a factor of 2 Meat PKR 2550/Kg PKR 2600/Kg
using a matrix.
Milk PKR 190/liter PKR 220/liter

2. Rotate a point (2, 2) in a graphic design by 90
degrees counterclockwise.

7. You are conducting a study on seismic waves in
23 4 two regions. Your measurements consist of the

d (in km/s) of P- - d surf:
3. Given seismic data |5 6 7 |calculate the speed (in ) of P-waves, S-waves, and surface

& 9 10

waves. Differences exist in the seismic wave
speeds between these regions, and it's crucial to
average reading for each sensor. determine which region exhibits overall faster
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wave propagation for your study. The speeds of
the seismic waves in the two regions are given in
the table below:

Region A Region B
6.2 kms' 6kms' |pP-Wave
A=[35kms" 3.3kms" |S-Wave Wave
o 4 Type
2.0 kms 1.8 kms™ | Surface Wave

By analyzing the given seismic wave speeds in both
regions, determine which region shows a higher
average speed across P-waves, S-waves, and surface
waves. This information will aid in understanding the
comparative seismic wave propagation
characteristics between Region A and Region B.

8. Cryptography:One method of encryption is to use
a matrix to encrypt the message and then use the
corresponding inverse matrix to decode the message.
The encrypted matrix, E, is obtained by multiplying
the message matrix, M, by a key matrix, K. The
original message can be retrieved by multiplying the
encrypted matrix by the inverse of the key matrix.

Thatis E=M x K and M = EK."

find its

A O

2 1
(a) Given the key matrix K=1|1 1
1 5

inverse.

(b) Use your result from Part (a) to decode the

47 34 33
encrypted matrix £={44 36 27
47 41 20

(c¢) Each entry in your result for part (b) represents the
position of a letter in the English Alphabet (A=1,B=2,
C=3, and so on). What is the original message.

9. At a local dairy mart, the numbers of gallons of

skim milk, 2% milk, and whole milk sold over the
weekend are represented by

Skim 290, Whole

milk milk milk
40 64 52| Friday
A=|60 82 76 |Saturday
76 96 84| Sunday

The selling prices (in dollars per gallon) and the
profits (in dollars per gallon) for the three types of
milk sold by the dairy mart are represented by

Sellin
Prilceg Profit

40 64 | Skim milk
B=|60 82| 2 % milk
76 96 | Whole milk

(a) Compute AB and interpret the result.

(b) Find the dairy mart’s total profit from milk sales
for the weekend.

10. A company that manufactures boats has the
following labor-hour and wage requirements.

Department

Cutting Assembly Packaging

Lhr  0.5hr 0.2hr | Small
P=1.6hr 1hr 02hr | Medium | Boat size
25hr 2hr 1.4hr Large
Wages Per hour

Plant A Plant B

20 Rs 16 Rs| Cutting
Q=116 Rs 12 Rs|Assembly |Department
12 Rs 8 Rs | Packaging

Compute PQ and interpret result

11. Jamal and Saleem each have student loans issued
from the same two banks. The amounts borrowed
and the monthly interest rates are given next (interest

is compounded monthly):

Lender Lender  Monthly Interest Rate
1 2
Lender | 0,011 (1.1%)
Jamal 1350000 | 300000 | q
Saleem 450000 | 380000 | Lender | (.006 (0.6%)
2




(a) Write a matrix A4 for the amounts borrowed by
each student and a matrix B for the monthly interest
rates.

(b) Compute 4B and interpret the results.

(c) Let C = [ﬂ Compute A(C + B) and interpret the
results.

12. A company sell five models of computers through
three retail outlets. The inventories are represented by
A & the Wholesale and retail prices are represented
by B. Computer AB.

Model Price .
ABCDE \’Yholesale Ret_all
32304, 840 1100 |A

A=102432|2 1200 1350 | B
424233 B=[1450 1650 |.C
2650 3000 | D

_3050 3200_ E

13. The figure shows the letter L in a rectangular
coordinate system. The figure can be represented by

033110}

the matrix B =
{0 01155

] ——— Review Exercise 2
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Each column in the matrix describes a point on the
letter. The order of the columns shows the direction
in which a pencil must move to draw the letter. The
L is completed by connecting the last point in the
matrix, (0, 5), to the starting point, (0, 0). Use these
ideas to solve following

(a) Use matrix operations to move the “L” 2 units to

the right and “3” units down. Then graph the letter
and its transformation in a rectangular coordinate
system.

(b) Reduce the L to half its perimeter and move the
reduced image 1 unit up. Then graph the letter and its

transformation.
A

5 ]

D

k\
| A
y
=

|

i

L

|

|

|
SRENE

o~
K

I O

<

Each of the questions or incomplete statement below is followed by four suggested answers or

completions. In each case, select the one that is the best of the choices.

a b
(i) The order of matrix 4 = |d e is:

h i
(a) 2x3 (b) 6x3 (c) 3x2 (d) 3x6
(ii) A matrix having all elements are zero is known as

(a) scalar matrix (b) diagonal matrix
(iii)
(a) row matrix (b) column matrix

(iv)

S = O

- o O
—
17}

1
A=10
0

(c) square matrix

(c) square matrix

(d) null matrix

A matrix having rows and columns are equal then it is called:

(d) rectangle matrix
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(a) arow matrix (b) an identity matrix (c) scalar matrix (d) diagonal matrix
(V) A matrix whose at least one element is imaginary number then this matrix is called:
(a) real matrix (b) natural matrix (c) complex matrix (d) none of the given option

21 Gy Ao

a a a
(vi) Ifd= { e 13} then 4’ is
a

i3 Ay @ a4 a ay ay a, 4y
(@ |a, ay (b) v ©) |a, ay (d) |ay a
ay a4 4y
ay Ay Qi3 Gy Gy ay
(vii) A square matrix X is said to be skew symmetric if:
() X=X b) X=X ©) X=-X d) X’=%
(viii) A square matrix X is said to be a symmetric if:
() X=X b) X=X ©) X=-X %) szé
. |7 4 . _
(ix) If4= { } and & is any scalar then k4 =
ros
kp q kp q kp  kq kp  kq
b d
@) {r s ®) r ks © kr ks @ r ks
1 4
. ) 1 2 -3
(x) The product of 4 and B is ifdA= L s 6} andB=1|2 5
3 6
@ —4 —4 ®) -4 32 © -4 32 @ 5 32
a c
32 77 32 5 5 32 32 4
(xi)  If A4 is a matrix of order 2x3 and B is a matrix of 3x4 then the order of AB is:
(a) 3x3 (b) 3x4 (c) 2x3 (d) 2x4

(xii)  If A is a matrix of order 3x2 then the order of its transpose matrix will be:
(a) 3x2 (b) 3x3 (c) 2x3 (d) 2x2
(xiii) LetA=[5 6]and B=[0 -1]then34+ 2B is:

(a) [16 15] (b) 1o (c) [15 16] (d) P
c
! 15 16
(xiv)  Which property does not holds in matrix:
(a) commutative property w.r.t addition (c) commutative property w.r.t multiplication

(b) associative property w.r.t addition (d) additive inverse
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(xv) A given matrix X is singular if:

(a) |X]=0 (b) 1X[#0 (c) IX1<0 (d) |X]>0
(xvi) A given matrix X is non-singular if:
(a) X]=0 (b) 1X[#0 (c) |X]<0 (d) |X1>0
(xvii) AA'=
(a) A2 (b) 4 (c) A d) I
(xviii) The order of the matrix [365] is:
(a) 3x3 (b) 3x1 (c) 1x3 (d) 1x1

4 5
(xix) IfAd=|6 7| thend'is:

8 1

4 5
45 6 b-o | .

(a) {7 g J (b) 2 —j (c) g z (d) Not possible

(xx)  Two matrices X and Y are multiplied to get XV if:
(a) both matrix are rectangular

(b) both matrix are square matrix

(c) both matrix have same order

(d) no. of columns of matrix X are equal to the no. of rows of matrix ¥

2. Perform the Following Operations

3 -1 2 4 1 31 [-1 2 O 3 21 5 -3 1
@H2x|o0 2 1| @Gi)|-2 3 O0|+|]0 5 -—-1|@Gi)|-1 2 0|x|2 1 =2
-2 1 4 1 -1 2 2 3 1 0O 1 31 L-1 0 2
2 1 -3
3(a). Perform row operations to reduce the matrix M to its echelon form M=|1 3 1
-1 2 0

(b). What are the elementary row operations applied to M to reach its echelon form

11 7
4(a). Reduce the matrix N to its reduced echelon form N=|2 1 10]
3 0 15

(b) Describe the Sequence of row operations used to achieve the reduced Echelon for of N.

5. Identify whether the following systems of equations are homogeneous or non-homogeneous:
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(a):

2x—y+3z=0 ; 3x+2y—z=5 ; x+z=2
(b):

3x2y+z=4; 4x+y+2z=10 2x+z=1

6. Determine if the following systems of equations are consistent or inconsistent:

(a):

2xty—=z=3 ; 4x+2y+z=6 ; x—2y=1
(b):

3x—2y+tz=4, ox—4+2z=7 2x+y—z=0

7. Solve the following system of equations using the matrix inversion method:
2x+3y—z=1; 4x-y+2z=06; —x+2y—z=4
(a) Find the solution for x, y, and z using matrix inversion.
(b) Check the consistency of the system.
8. Apply the Gauss elimination method to solve the system:
3x+2y+z=5 ; 2x—3y+z=-1 ; 4x+y—2z=9
(a): Determine the solution for x, y, and z using Gauss elimination.
(b): Is the system consistent or inconsistent?
9. Apply matrix operations and solution methods to solve the following real-world problem.
system of equations representing the flow of goods in a supply chain:
2x+3y—z=50 ;3 30x+2y+z=30 ; 3x-y+2z=70
(a): Determine the quantities of products (x, y, and z) involved in the supply chain.

(b): Analyze the consistency of the supply chain flow based on the solution.



