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Preface

In this dynamic 10th-grade mathematics textbook, I embrace the evolving world of education by
utilizing the CPA (Concrete, Pictorial, Abstract) Approach. This method, grounded in concrete
examples, pictorial representations, and abstract concepts, caters to diverse learning styles,
making mathematics accessible and engaging. Interactive images and real-life examples
transform mathematical theories into vivid, relatable experiences, enhancing understanding and
enjoyment.

The book encourages active learning through "Test Yourself" sections, classroom activities
promoting collaboration and critical thinking, and insightful "Teacher's Footnotes" for effective
content delivery. Rich in interactive color images, it offers a visually stimulating learning
environment, breaking the monotony of traditional texts.

With a variety of examples, worksheets, and video lectures, the textbook provides
comprehensive practice and learning opportunities. Additionally, simulations allow hands-on
exploration of concepts, deepening understanding. This textbook is more than an educational
tool; it's a journey designed to instigate a deep appreciation for mathematics, connecting the
subject with the rhythm of the modern educational landscape.
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There are many examples of parabolas in everyday  The vertex of a quadratic function is the point
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The vertex is the highest point (maximum).

The axis of symmetry is a vertical line that passes
through the vertex of a parabola, dividing it into
functions work in the same way. Each input value ~ Wher

(like your code) corresponds to exactly one output
value (like your snack). This relationship between
input and output is the essence of functions in
mathematics, By understanding this concept, you will
be able to sce how functions help us describe and
analyze patterns, solve problems and make
predictions in a variety of real-world situations,

two equal and mirror-image halves. For a quadratic
function y = ax’+brre, the axis of symmetry is
given by the equation x = — 1=, I helps to find the
vertex and understand the symmery of the graph.
The point where the graph crosses the y-axis s the y-
intercept.

The roots of a quadratic function are the values of
x where the function equals zero, corresponding to
the points where the parabola crosses the x-axis.
They can be calculated using the quadratic formula,
factoring, or completing the square. Graphically,
the roots are the x-coordinates where the parabola
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SLO based Model Video lecture

Salient Features
Comprehensive Learning
Engage students with videos, simulations,
and practical worksheets.
Structured Lesson Plan
Well-organized with clear objectives,
PPTs, and a question bank.
Engaging Multimedia
Visual appeal through PPTs and interactive
simulations.
Assessment & Tracking
Diverse question bank and progress
monitoring.
Adaptable & Accessible
Scalable and accessible, suitable for all
learners.
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SKILL O —suins.1
<> Underst ding the rectangular coord
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system for
2D planes.
<> Representing vectors as di d line seg with

< Utilizing position vectors to describe point locations.
<> Calculating vector magnitudes in specific directions.

Exercise 8.1

1. Classify the following measurement as scalars

and veetors.

(i) Ske (ii) 3 meters East North
(i) 25-watts (iv) 35°C

(v) 40 m/sec?

2. Find the magnitude of the following vectors.
@ P(23) (i) O(4.7)

(iii) R(-2,9) (iv) §(-2-2)

v T(0.-7)

| \ Vectors in Plame

4
Student Learning Outcomes

<= Add and subtract vectors.

< Multiply a vector by a scalar.

<+ Express translation by a vector.

<+ Express a vector in terms of two non-zero and non-parallel
cnplanar vectors.

Addition and
EAUN Subtraction of Vectors

8.10.1: Addition of Vectors

Two given vectors can be added by the following
three laws.

Head — to — Tail or Triangle Law of Addition

To add two vectors, X and ¥, we position them such
that the head of the first vector coincides with the tail
of the second vector. The resultant vector, X+y, is
obtained by drawing a vector from the tail of the first
vector to the head of the second vector, as shown in
figure 8.12. This method of adding vectors is known
as the Head-to-Tail method or the Triangle Law of
Vector Addition.
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1 Complex Numbers

CHAPTER

Did you know that complex numbers play a vital role in signal processing, a key aspect of contemporary communication
technology? These numbers are crucial for understanding and manipulating signals in various forms of data
transmission. Complex numbers are used to accurately represent the phase and amplitude of signal components, enabling
engineers to efficiently filter, compress and reconstruct signals. This application is critical in a range of technologies,
from improving the clarity of mobile phone communications to ensuring the accuracy of satellite transmissions. The use
of complex numbers in signal processing highlights their invaluable contribution to advancing communication
technology.

-

Complex Numbers




Students’ Learning Outcome

-

10

Identify complex numbers, complex conjugate, absolute value or modulus of a complex number

Apply algebraic properties and perform basic operations on complex numbers

Demonstrate additive identity and multiplicative identity for the set of complex numbers

Find additive inverse and multiplicative inverse of a complex number z.
Demonstrate the following properties of a complex number

| z|=l=z]=[z[=[ =],
Z=2z,7z=lz2,2, ¥ 2,=2,+2,

z Z1

= B U I
z,z2,=Z1+ Z2, += ,2, 0.

Find real and imaginary parts of the following types of complex numbers:

X +1y)", X, +iyy 47 wheren= 1 and 2
(x +1y) ()mz),x2 ty, #0,

Solve the simultaneous linear equations with complex coefficients,
Apply the Geometric interpretation of a complex number

Apply the geometric interpretation of the modulus of a complex number.
Apply the geometric interpretation of algebraic operations.

Complex Numbers /




E%; Knowledge

(¥j Understanding Complex Numbers: Comprehending that a complex number is in | Pre & Post Requisite

the form z = a + bi where a and b are real numbers and 7 is the imaginary unit.
] Complex Conjugates: Knowing how to find the complex conjugate of a given

complex number, z = a + biwhichisz =a- bi. 9" Class Math _:
(¥J Modulus of Complex Numbers: Understanding the modulus (or absolute value) Chapter # 1
ofacomplex numberas| z |= Va2 + b2, representing its distance from the Real Number System
origin in the complex plane
(¥ Properties of Complex Numbers: Familiarity with algebraic properties such as 10" Class Math '—‘
distributive, associative,and commutative properties in the context of complex Chapter # 1
numbers.

. . Complex Numbers
(J Demonstrate properties of Conjugateof a complex number z

— — — 2 — —
IzI—I—zI—IzI—I—ZI,z_—z, 7zz=zI", 2, T 2,=2Z, T2, I year Class Math
- z, Zi Chapter # 1
Ziz,=Z1+ 22, Z_ +Zazz # 0. _'ComplexNumbers

2

(¥J Real and Imaginary Parts of Powers of Complex Numbers: Knowledge of how
to expand and interpret expressions like (x + iy)" for different values of n to get real
and imaginary parts

(J Solving Complex Linear Equations: Skills in solving linear equations with
complex coefficients using methods like substitution, elimination, or matrix
approaches.

(¥J Geometric Interpretation: Understanding the representation of complex
numbers in the Argand diagram and visualizing their algebraic operations
geometrically.

-y Skill

(¥J Understanding Complex Numbers: Proficiency in comprehending that a complex number is

represented in the form z=a+bi, where a and b are real numbers, and 7 is the imaginary unit.
(¥J Finding Complex Conjugates:Ability to calculate the complex conjugate of a given complex

number, z=a+bi, resulting in Z=a — bi.
(] Calculating Modulus of Complex Numbers: Skill in determining the modulus (or absolute

value) of a complex number as | z |= Va? + b2, signifying its distance from the origin on the complex plane.
(V] Understanding Properties of Complex Numbers: Proficiency in applying algebraic

properties, including distributive, associative, and commutative properties,within the context of complex numbers.
(¥J Demonstrating Properties of Conjugate: Ability to illustrate the properties and applications

of the conjugate of a complex number z.
(vJ Analyzing Real and Imaginary Parts of Complex Powers: Skill in expanding and

interpreting expressions like (x+iy)" for various values of 7 to extract the real and imaginary parts.

(¥j Solving Complex Linear Equations: Proficiency in solving linear equations with complex
coefficients using methods such as substitution, elimination, or matrix approaches.
(] Utilizing Geometric Interpretation: Application of geometric interpretation to understand
the representation of complex numbers in the Argand diagram and to visualize algebraic operations geometrically.

\ Complex Numbers m
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Student Learning Outcomes —@

<> Identify complex numbers, complex conjugate, absolute value or modulus of A complex number

In this chapter, we'll uncover the world of complex
numbers, learning how to find their conjugates,
moduli, and explore their algebraic properties. You'll
master solving complex linear equations and visualize
these numbers on the Argand diagram. By the end,

you'll see how complex numbers elegantly solve real-
mathematical

world problems and enhance

understanding.

W Complex Numbers

A fundamental property of real

numbers is that their squares are
always nonnegative. For instance, there is no real
this,

imaginary unit,

number x such that x? = —1.To address
mathematicians introduced the

denoted by i, which is defined by the property:

This introduction of i continues the historical pattern
of expanding number systems to solve problems that
couldn't be addressed within existing systems. For
example, if we only had integers, equations like 3x =
1 would have no solution. This limitation led to the

. ) 1 2
creation of rational numbers, such as 3 and =

Similarly, within a universe of rational numbers,
equations like x? = 3 have no solutions, leading to
the introduction of irrational numbers, such as V3 and
\/7. The real numbers, therefore, include both rational
and irrational numbers. Now, within the universe of
real numbers, there is no solution to x? = —1,
prompting the introduction of the imaginary unit i,
where i2 = —1.

Through this exploration, we see that each new
number system-from integers to rational numbers, to
real numbers, and finally to complex numbers-has
been developed to solve equations that could not be
addressed by previous systems.

A simple consequence of the definition of i is that all
powers of i may be expressed in terms of = 1 or i
itself.

P=ii=—i 0=

For example, i'= i, =1,
(i) = 1 and if we continue in this way to obtain
higher powers of i, we obtain the values 1,7, —1 or —

i. Similarly, for negative powers, we have

1.1.1 Complex Numbers represented by an
expression of the form z =a + ib

The complex number system arises from
incorporating i. Complex numbers are expressed in
the form a + bi, where a and b are real numbers. In
this expression, a is called the real part, b is the
imaginary part, and i is the imaginary unit, with
i?=-1.

For example, in the complex number 2 + 41,2 is the
real part, and 4 is the imaginary part. When a complex
number has a negative imaginary part, such as 5 +
(—=3)i, it is typically written as 5 — 3i. Additionally,
the complex number a + 0i is usually written simply
as a, indicating that real numbers are a subset of
complex numbers as we can see in the figure 1.1.
Similarly, 0 + bi is written as bi, and such numbers
are often referred to as pure imaginary numbers.
Usually, the complex number x + yi is denote by z
=x+yi

Accordingly, zi = x1 + yii, z2 = x2 + y2i, z3=x3 + V30, ...
The set of all complex numbers is denoted by C, that
® C={x+yi|x,ye R}

Complex Numbers /



Note:

In the expression x + yi :

Real Numbers: If y = 0, then x + yi = x. Every
real number x can be written as a complex number
with y = 0.

Pure Imaginary Numbers: If x = 0 and y # 0, then
x + yi = yi, yknown as a pure imaginary number
(e.g.,iand —i).

Zero Complex Number: When both x and y are
zero, x +yi = 0.

Unit Complex Number: Whenx = 1 andy =
0,x+yi=1

Thus, all real numbers can be expressed as complex

numbers n the form x + 0i.

Complex Number
a+bi

Real Numbers
a+0i

Irrational
Number

Imaginary
Numbers
a+bi,#0

Rational Numbers
Integers
Pure Imaginary

Numbers
bi,a=0

‘Whole Numbers

Natural Numbers

Figure 1.1: Depicting the set of complex
numbers and related subsets

1.1.2 Complex Numbers as Ordered Pairs of Real
Numbers
Complex numbers may also be defined as ordered

pairs of real numbers. Thus a complex number z is
an ordered pair (@, b) of real numbers a and b,
written as z = (@, b)

The first component « is called the real part of z
and the second component b is called the imaginary
part. The real part is denoted by Re(z) and
imaginary part is denoted by Im(z) respectively i.e.
Re(z) = a and Im(z) = b. The ordered pair (0,1) is
known as imaginary unit and it is denoted by i =
0,1)

The set of all ordered pairs of real numbers is the set
of complex numbers denoted by C, that is
C={x+yi|x,ye R} =IR x IR,where IR is the set

of real numbers.

I \ Complex Numbers

We are in a position to express every complex
number z as an ordered pair in terms of 7 as follows;

z=(a, b)= (a, 0) + (0, b)

(a, 0) + (b, 0) (0,1)

(va=(a 0)andi= (0,1)
z=(a,b)=a+ bi

a+ bi
that is

We see that an ordered pair (a,b) is expressible in

the usual form of complex number as @ + bi. Thus
the two notations for a complex numbers z can be

used interchangeably.

Example 1.1: Write in the form of a+bi and (a,b)

@) 7 (i) 3¢ (iii) 0
(iv) % (v) 3-+-=16 (vi) 1.
Solution:

@ 7= 7+0i = (7,0

(i) 3= 0+ 3i=(0,3)
(iii) 0= 0+0i = (0,0)
(iv) % = %JrOi = (%,0)

(V) 3-+-16=3-i16 =3-4i=(3,-4)
(vi) 1=1+0i=(1,0)

v

Student Learning Qutcomes —@

<> Apply the Geometric interpretation of a complex
number

< Apply the geometric interpretation of the modulus
of a complex number.

il Graphical Representation

of Complex Numbers

The complex plane is also known as “The Argand
Diagram” after the French-Swiss Mathematician Jean
Robert Argand (1768-1822).

An Argand diagram is a graphical representation of
complex numbers on a two-dimensional plane.
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The horizontal axis (commonly referred to as the real

axis) represents the real part of a complex number
(see figure 1.2).

The vertical axis (known as the imaginary axis)

represents the imaginary part of the complex number.
A complex number z = a + bi (where a and b are

real numbers, and i/ is the imaginary unit) is
represented as a point on this plane, with a
determining the position along the real axis, and b
determining the position along the imaginary axis as
shown in figure 1.3.

y-axis A
N p(a,b)
¢ m > [x-axis
\ 4
Figure 1.3

Complex numbers offer a captivating geometric
perspective on standard arithmetic operations. While
real numbers are represented on a one-dimensional
number line, providing certain insights into their
characteristics, the advent of the imaginary unit i
allows us to extend this into a two-dimensional plane.
This approach of visualizing complex numbers as
points on a plane opens up new avenues for
understanding their unique properties.

Every point in the plane may be associated with just
one complex number. Thus, there is one-one correspo-
ndence between the infinite set of complex numbers
and the points of the plane.

Example 1.2:Represent the following complex
numbers in the complex plane 4 + 3i, 3+2i,-2
—3i and 5-5i .

y-axis A

—4+3i

3+42i

[SEON S IS S ]

Xx-axis

A
A\ 4

|
(9]
|
-—
|
w
|
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—
=
e

[V S

A 4

Figure 1.4

Solution: In figure 1.4, all the above complex
numbers have been represented. We see that the
complex numbers appear in all the four quadrants due
to the negative and positive signs with their real and
imaginary parts.

1.1.2  Absolute value or Modulus of a Complex
Number

Let z = (a,b) = a+bi be a complex number. Then
absolute value or modulus of z, denoted by [z, is

defined by
|z| =+/a? + b?

In the adjoining figure P represents a + bi. @is a

perpendicular drawn on x-axis.

y-axis A

P(a,b)
r'

N

o

¢
b
&
< £ Y _lp |x-axis
0T A(a,0)

\ 4
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Thus O_Q= a and @ = b. In the right angled—
triangle OQP, we have, by Pythagoras theorem

or| =[og| +[raf
OP|= |Z| =+a’+b’

Therefore, the modulus of a complex number is the

distance from the origin of the point representing the
number.

Note: The modulus of a complex number is always
positive because it represents the distance from the
origin in the complex plane, which is always non-
negative. It is zero only when the complex number
itself is zero.

Example 1.3: Compute the absolute value of the
following complex numbers:

i 2i (i) 4 (iii) 3-6i
Solution:

(i) Letz=2i or z=0+2i

Then by the definition

|z|:1/(0)2+(2 P=422 =2
(ii) Letz=4or z=4+ 0i.
Then by the definition

2| = () +(0) =4 = 4

(iii) Letz=3 - 6i.
Then by the definition

|2|=3)* +(=6)° =9 +36 =45 =345

number a + biis a — bi and a — bi is a + bi.

We denote the conjugate of any complex number z as Z.

is obtained by changing the sign of the imaginary part
of z.

Thus Conjugate ofz=a+ biis Z = a— bi
Geometrically speaking, the conjugate of z is simply

a reflection of z about the real axis, as shown below:
\ Complex Numbers

Im A

(—a,+b) 2y (a! b)

rd

(=a,—b) z (a,—b)
2

Example 1.4: Find the conjugate of

(i) 4 -5i and (ii) 6 +9i.
Solution:
(i) 4-5=-4+5i (i) 6+9%=6-9i

v

Student Learning Outcomes —@

<~ Apply algebraic properties and perform basic
operations on complex numbers

<~ Apply the geometric interpretation of algebraic
operations.

=
Basic¢ Algebraic E-_M

Operations on Complex Numbers.

In this section, we explore the
core arithmetic operations: addition, subtraction,
multiplication, and division, as they apply to
understanding how these complex numbers. This
study is essential for numbers, which combine real
and imaginary components, function within the realm
of advanced mathematics

Let zi=a+ biiand

2= c+ by be two

complex numbers. Then their,

(i) Addition:

Adding complex numbers involves summing their
real and imaginary parts separately.

For zi=a+bi and zo=c+di the sum is (a+c)+(b+d)i

Geometrically, on the Argand Diagram, each
complex number is represented as a point or vector.
Adding them involves placing the second vector's tail
at the head of the first vector. The resultant vector
from the origin represents the sum. For example,
z1=3+4i and z=1+2i sum to 4+6iwhen plotted and
added geometrically, providing a clear visual
representation of the operation.



2+ z, =(a+bi)+(c+di)=(a+c)+(b+d)i

Geometrical Representation

Let us now study the geometric effect of
adding/subtracting one complex to/from another
complex number. For example, we can plot 2 + i
and 1 + 3 i on an Argand diagram. Plotting the sum
(2+1i)+(1+31i)=3+4ishows us that addition of
two complex numbers is the same as addition of

vector, and can be done via the parallelogram law:

Im
A 7z

4

z T/

2
3 7
/
va
/ ’
T /Zl

[\

This also show us that addition of complex numbers

is commutative, ie. z;+2z, =2, +2z;. It is
important to know this since we cannot assume that
anything about the arithmetic of real numbers
transfers to the arithmetic of complex numbers.

(ii)
Just Like Addition of complex numbers Real part
subtracted from real while imaginary subtracted

Subtraction:

from imaginary. Consider two imaginary numbers
7z, = a + bi and z, = ¢ + di there difference will be

z,— z,=(a+bi)—(c+di)=(a—c)+(b-d)i

Geometrical Representation

For Graphical interpretation parallelogram law
applies for subtraction as well. For example, if z; =
2+iand z, = 1+ 3i then z, —z; = -1+ 2i and

Zy — 2y = 1 = 21 as shown below:

Im Im

4 4

- Z, - Z,

3 3=
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z,—-2,=1-2i z,—7,=—1+2i

Hence proved geometrically and algebraically, that
subtraction is not commutative.

Below is an all-in-one diagram representing the
geometric effect of the three operations of
conjugation, addition, and subtraction on two
complex numbers z and w.

lm\

Z+tw

Example 1.5: Perform the indicated operation in
each of the following.

(i) (8=5i)+(5+6i) (i) i — (6 —
9i).
Solution:

()8 —5i)+(5+6i)=(8+5)+(-5+6)i=13+i
(ii)i — (6 — 9i) = (0— 6) + (1 — (-9))i=— 6 + 10i

(iii)  Multiplication:

1.7.1 Multiplying Two Complex Numbers

When we think about multiplying real numbers, it's a
simple operation-multiply the values together, like
5x10=50. But with complex numbers, which have
both a real part and an imaginary part, the process is
a bit different.

Multiplication of a scalar with a complex
number

In mathematics, when we multiply a real number
(also known as a scalar) by a complex number, we
are essentially scaling the complex number. The
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operation is straightforward: the scalar multiplies
both the real and imaginary parts of the complex
number.

For example

kz, = k(a, +bi) = ka, + kb,i for any real number £.

Now,let us understand how do we multiply numbers
like a+ib and c+id? Fir this consider two complex
numbers zi=a + ib and z>=c + id. We define the
product ziz2 to be:

72122=(a+ib)(c+id)=ac+iad+ibc+i’bd
Since i* = —1, this simplifies to:
z1z2=(ac — bd)+ i(ad + bc)

Notice that the real part of z1z; is ac — bd, and the
imaginary part is ad + bc.

Example:
For (2 +1i)(—5—4i):

2 +0)(=5 — 40)
= 2(=5) + 2(—4i) + i(=5)
+i(—4)

= —10 — 8i — 5i — 4i?
Since i? = —1
—-10—-8i—5i+4=-10—-13i+4 =—-6—13i

Commutativity:
Multiplication of complex numbers is commutative:

Z]_Zz = ZZZI
For example, (=5 — 4i)(2 + i) = —6 — 13i, just as

shown previously.

Example 1.6: Multiply (2 + 3i) (4 + 7i).

Solution:

(2 +30) (4 + 7i) = (2)(4) + (2)(7i) + (4)(3i) + (3i)(7i)
=8+ 14i + 12i + 21(-1) (- i?=-1)
=(8-21)+(14+12)i

=13 + 26i.

I \ Complex Numbers

Note: When performing operations with square roots of
negative numbers, begin by expressing all square roots
in terms of i. Then perform the indicated operation.

Correct:
J=25-N-4 =i25-i\/4
=5i-2i

=10 =10(-1)=-10

(iv) Division of Complex Numbers:

Dividing one complex number by another directly is
challenging because the denominator contains two
distinct terms. To overcome this, we multiply both the
numerator and the denominator by the conjugate of
the denominator. This process, known as

rationalization , simplifies the expression by

eliminating the imaginary component in the

denominator, making the division possible.

z, a+bi

We have -+ =—1—1

z, a,+bj
a,+bi o —bji

a,+bji

- (by rationalization)
a,—b,i

_ (a, +bi) % (a, —byi)
(a,+byi) (a,—Dby)

_ (aa,+bb,)—(ab, —ba, )i’
a:+b;

_ (a,a,+bb,)—(ab,—ba,)i
a22 + 1722

(... l-2 — 71)

aa,+bb, ba,—ab, .
2 + b2 + 2 _ b2 !
a, +b, a, —b,

z, a,+bi aa,+bd bc—ad .
a;+b;  a+b;

Thus

z, a,+Db,i

. 2+3i
Example 1.7: Write

3-5i

in the form a + bi.




2+3i>< 3+5i
3-5/ 3+5i
_ (2+3i)(3+50)
(3-50)(3+50)

Solution:

_ 6+10i+9i+153)*
9+15i—15i—25(i)

_ 6+19i+15(-1)
9-25(-1)

_9+19i 9 19

=t
34 34 34
@— Skill 1.1
<> Understanding Complex Numbers: Proficiency

in representing complex numbers as z=a+bi, where
a and b are real, and i is the imaginary unit.

<> Finding Complex Conjugates: Ability to find the
conjugate of z=a+bi as z "=a-bi.

<> Calculating Modulus: Skill in calculating the
modulus |z| = Va? + b?, indicating its distance
from the origin on the complex plane.

Exercise 1.1

1.Simplify and write the complex number as i, —i, —
l and 1.
@ -i*
@iv) °

(ii) l~223
Wi
2.Add the following complex numbers.

(i) 42 +3i),-3(1 - 2i)

(iii) 2!

(i) (V31 (1+/3)
O SN [ NER]
574 | 4’5

3.Subtract the following complex numbers.

@) 232 - 5\7i from 542 -97i

(i) (—7,%jfrom (7,%)

(iii) (x, 0) from (3,—y)
(iv) 2x—3yi from 4x—7yi

4.Multiply the following complex numbers:
(i) (8i+ 11)(=7+5i0)

(i) (59)(1 -2i)

(iii) (9-12i)(15i+7)

5.Perform the indicated division and write the
answer in the form a + bi.

4+ . 1
O 37 W T
1 .. 6+
(iii) Py (iv) ;

6.Prove that the sum as well as product of
Complex numbers and its conjugate is a real
number.

7.Write each expression as a complex number in the
formz= a + bi.

i (1=d-2@4+i7 @) (1-iy

(i) (24)(87) (iv) (—6i)(=5i)
8.Find the indicated absolute value of each complex
number.

(i) |3+ 4 (i) |8 —5i]
9.If z1 =3 + 2i and z; = 4 + 5i, then evaluate.
(i) |z1 + 2o (i) |z1-z9
(iii) |z (iv) 2L

2,

10.Simplify and write your answer separately into
real and imaginary parts.

(1+2i)° Lo =i
@y

243 .
O 55 0 =3

11.Show that z . z is a real number.

12.Show that z = z ifz is real.

&

Student Learning Outcomes —@

<> Demonstrate additive identity and multiplicative
identity for the set of complex numbers

<> Find additive inverse and multiplicative inverse of
a complex number z
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Properties of Complex

Numbers
ampers = @
Ead

complex numbers, examining their algebraic rules

This section focuses on the
distinctive properties of

and behaviors. We will explore how these numbers,

comprising real and imaginary components, operate

within the framework of advanced mathematics

1.5.1 Properties of complex numbers with respect
to addition and multiplication

Properties of addition and multiplication in complex
numbers also holds. Like the addition and
multiplication properties of real numbers. Now, look
at the following properties.

1. Closure Property:

Addition: When you add two complex numbers
together, you always get another complex number.
For example, if you add 2 + 3i and 4 + 51, the result
is 6 + 8i, which is still a complex number.
Multiplication: When you multiply two complex
numbers together, the result is always another
complex number. For instance, multiplying 1 + 2i
by 3 + 4i gives —5 + 10i, which is also a complex
number.

2. Commutative Property:

Addition: The order in which you add two complex
numbers doesn't matter. For example, 2 + 3i + 4 +
5i is the same as 4 + 5i + 2 + 3i. You get the same
result either way.

Multiplication: The order in which you multiply two
complex numbers doesn't matter either. For example,
multiplying 1 4+ 2i by 3 + 4i gives the same result
as multiplying 3 + 4i by 1 + 2i.

3. Associative Property:

Addition: The way you group complex numbers
when adding them doesn't change the result. For
example, if you add (1 + 2i) + (3 + 4i) first, then
add 5 + 61, it's the same as adding 1 + 2i to (3 +
4i + 5+ 61).

Multiplication: Similarly, the way you group
complex numbers when multiplying them doesn't
change the result. For example, (1 + 2i) X (3 +
4i) x (5 + 61) gives the same answer no matter
which two you multiply first.

4. Distributive Property:

Multiplication over Addition: If you multiply a
\ Complex Numbers

complex number by a sum of two others, it's the
same as multiplying the first complex number by
each of the others separately, and then adding the
results. For example, 2 X (3 + 4i + 5 + 6i) is the
same as 2 X (3 + 4i) + 2 x (5 + 6i).

5. Additive identity and multiplicative identity, of
Complex Numbers
This topic introduces the foundational concepts of
additive and multiplicative identities in the context
of complex numbers. We will define the additive
identity, which leaves a number unchanged in
addition, and the multiplicative identity, which
preserves a number during multiplication, and
explore their applications in complex number
arithmetic
Additive Identity

A complex number a> + b»i is called the additive
identity of the complex number a, + bai if

(a1 + bli) + (az + bzi) =a + b

Let a1 + bii be any complex number and a> + boi =
0 + 0i be the zero complex number. Then

(a1 + bii)+ (0+ 0i)= (a1 + 0) + (b1 + 0)i (by
definition of addition)

=a1+ bii
Similarly, (0 + 0i) + (a1 + bii) = a1 + bii

Therefore, the additive identity in C is the zero

complex number i.e.
Multiplicative Identity

A complex number 1 + 0i is called the
multiplicative identity of the complex number a; +

bii if
(a1 + bii) (a2 + bai) = (a2 + bai) (a1 + bii)= a1+ bii
Let a1 + bii be any complex number and a> + bai =

1 + 0i be the unit complex number. Then

(a1 + b)) (1 +0))=(ar. 1 —=b1.0) + (@1.0 + b1.1)i
(by definition of multiplication)
(ar + bii) (1 +0i) = (a1, b1) (1, 0)

=(a1—0,0+b1) (by x

property)
= (a1, br)=a1 + bii



Similarly, (1+ 00) (a1 + bii)= a1 + bii

Thus the multiplicative identity in C is the unit

complex number i.e.

6. Additive inverse and multiplicative inverse of
complex numbers.

Explore the concepts of additive and multiplicative
inverses in complex numbers, focusing on how the
additive inverse neutralizes a number through
addition, and the multiplicative inverse produces
unity through multiplication. This understanding is
key for effective manipulation of complex numbers

Additive Inverse

A complex number —a; — bii is called the additive
inverse of the complex number a; + bii if

(a1 + bii) + (a1 — bii) = (a1, br) + (—a1, —b1)
= (a1 — a1, bii — by)
= (0, 0) additive property

Therefore,

the additive inverse of a, + biis—a, —bi |

Example 1.8:Find additive inverse of 8 — 5i
Solution:
Let x + yi be the inverse of 8 — 5i then by definition
8—=5)+(x+yi)=0+0i
B+x)+(-5+y)i=0+0i
= 8+x=0and -5+y=0
= x=-8 and y=35

x+yi=—8+5i
Hence, the additive inverse of 8 — 5i is —8 + 5i
Multiplicative Inverse

A complex number a; + boi is called the
multiplicative inverse of the complex number a; +
bii if

(a1 + bii) (a2 + bai) = 1 + 0i i.e. the multiplicative
identity.

We have (a1 + bii) (a2 + bai) =1+ 0i

= (a1a2 — b1b2) + (azxby + bibo)i= 1+ 0i

= aiax—bib=1 (1)
and aby+ biax=0 (i1)
From (ii), we have
-b
aib,= —biax or b= ﬁ ...............
al
(111)
Putting the value of b in (i), we get
2 2
aiax + b, ba, _ 1 4, tha, =1
a a
= (a) +b))a, = q
a, :
= aG—— o ol v
? a +b’ )
Putting the value of a» in (iii), we get
__ ~ha
oa(a+ b))
—a
= b=—=~-— \4
? a’ +b} ©

From (iv) and (v), we have

4, bl

a,+b,i= -
al2 +b12 al2 +b12

Thus the multiplicative inverse of

a. b,
af +b12 af +b12

a,+biis

Example 1.9: Find multiplicative inverse of 4 + 7i

Solution: Letx + yi be the multiplicative inverse of
4 + 7i. Then by definition

4+7) (x+yi)=1+0i
4(x +yi)+Ti (x +yi)=1+0i
Ax + dyi + Txi+ Ty =1+ 0i
4x + (Tx +4p)i+ Ty (1) =1+ 0i (oi2=-1)
4x—-7y)+(Tx+4y)i=1+0i
= 4dx+Ty=1
and Tx+4y=0
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Multiply equation (i) by 4 and equation (ii) by 7.
Then add both equation.

l6x —28p =4
49x + 28y =0

65x=4 or x= —
65

Now, putting the value of x in equation (i).

4 16 65
412 7y=1 — - —==7

(65) 4 65 65
16 49
16 . _ = -7
65 Ty=1 65 Y
16 7
- — :> = —
T 1="7y Y 65

x+ i=——+li
M7 65 65

Multiplicative inverse of 4 + 7i is ———1.

65

2
Thus — 3 + %i is the multiplicative inverse of — 2

-3i

The complex numbers possess all the properties
that real numbers possess except for the order
relation, that is, we cannot say that one complex
number is greater than the other complex
number.

”

Student Learning Outcomes —@

<~ Demonstrate the following properties of a complex
number z
|z|=l=z|=lz |=|-Z],

Z=z,22=|z>2,+ 2%, =72; T 2,

leZ_Zl-I_ZZ’ [Z—j—z,zz;éo

\ Complex Numbers

(I Some Properties of the Conjugate and

Modulus of Complex Numbers

In the following theorem we prove some properties
pertaining to conjugation and modulus of complex
numbers.

Theorem 1: Forall zy, z2, z31n C
@) lz|=|-z|=|Z|=]|-Z] (i) Z=:z
(v) 4FZ,=2,+7Z,

) z Z,
(vi) (Z—lj: 7—;,22 #0

2

(i) zZz =|z|?
V) 2,2y =Z,Z,

Proof: (i) Letz = a1 + bii. Then

—z=—-a1—bii, Z =a—bii and

—Z=—ai+ bi :@

Therefore by definition

2

|z} =ial+b> @)

|z| = Ja)+ (b =Ja+b] (il
2| =@+ (b)) =NJai+b} (iii)
|21 =a) +(B) =a+b (iv)

Equation (i), (ii), (iii) and (iv) yield that

lz|=]=z|=]Z[=]-Z]

(ii)Let z= a1 + bii, then Z = g, +hi=a,—bi and

|

S0 _ _ -
=a+bi=a—-bi=z

Thus zZ = z

(iii)Let z = a; + bii. Then Z = a; — bii

Therefore zZ = (a1 + bii) (a1 — bii)
= al —abii+ biai —b} 2
= &/~ (-1)b (=1
=a+ b

| z|? (lz]=ya +b)



Thus zz = |z|2
(iv) Letzi=ai+ bii and z2=ax+ bai
Then Zi=ai—bii, Z>=a» —bsi and
zi+ 2z = (a1 + bii) + (a2 + bai)
= (a1+ a2) + (b1 + bo)i

Therefore ==+ a)— (b + )i
= (a1 — bii) + (a2 — bai)

-7 112,

Thus Z1+2%= 2 + %

v) Letzi = a1+ bii and z2= ax + bai

Then 2%, = (a, +bi)a, +byi)
= (aja, +bb,)+(a,b, +ba,)i
= (a1a2 — bibn) — (@12 + bia)i (1)

and %4 % = (a,+bi) (a,+by)

= (a1 — bii) (a2 — bi)
= (a1a2 — b1b2) + (—ad — bc)i
= (a1a2 — biby) — (a1b2 + bia)i (i1)

Thus from equations (i) and (ii) we have

2125y =% . %

(vi)  Letzi= a1+ biiand z2 = a> + bai

z a,+bji

_1 =
Z. .
2 ay+b

Then

_aytbi " a,—Db,i

- - (by rationalization)
a,+b,i a,—b,i

_ (aa, +bby)+ (ba, —ab,)i

2 2
a, +b;

aa,+bb, _ab,—ab, ;

a, +b; a; +b;
. [ﬂ J: a,a, +bb, n a,b, —a,b, ; (1)
: 2 2 2 2 -

Z, a, +b; a, +b,

Parts of the Complex |2
Numbers of the form

f .
1 a, +bi
and — = i
Z,  a,+bji
_a,—bi
a,—Db,i
a,—bi a,+b,i . .
=—— - (by rationalization) p
a, — bzl a, + bzl

_ (a,a, +bb,)—(ba,—ab,)i (ii)
2 2
a, +b,

aay+hb, yab—ab (i)
2 2 2 2
a, +b; a, +b;

Thus from equations (i) and (i1), we have

Z, | A
4 e
z Z

Find real and imaginary parts of the following types

of complex numbers.

Wheren=+1and £2

Real and Imaginary

Complex numbers, expressed as x+iy, contain real
and imaginary parts. This section focuses on
extracting these parts from complex expressions like
(x+iy)" and more intricate forms involving division
and exponentiation.

(i)(x+iy)” (i1) iR where n==+1and£2
X, +1iy,
Solution:

1.  Real and imaginary parts of (x + iy)” where
n==*]and*2
When n=1, (x+ iy)" reduces tox + iy

Therefore,

Real part = x and imaginary part =y

Complex Numbers /



when n =-1, (x+iy)n reduces to (x+iy)1

1
(x+1y)

We have

(x+ i)' =

1 ><x—iy

= (by rationalization)
(x+iy) x-—iy

xX—iy X Y
a - 2 2

2 2 !
X +y (x+iy) x" -y

Therefore,

Real part = —

x4y
-y

x4y

Imaginary part =

2
)

When n =2, (x+iy)n reduces to (x+iy)

we have (x+iy)2 =x"+2ixy+i’y’
=x*+2ixy ="
(viP=-1)
= (x2 —y2)+2ixy
Therefore,

Real part = x” = )’
Imaginary part = 2xy

When n=—2, (x+iy) reduces to (x+iy)2

SN2 1
(x+iy) _—(x+iy)2

We have

_ 1 y (x—iy)’
(r+iy)" (x—iy)’

_ x> —y* = 2ixy
[(x+iy)(x—iy)]’

I \ Complex Numbers

2

:xz—yz—Zixy _ -y _i 2xy
(x2+y2)2 (x2+y2)2

(x2+y2)2
Therefore,
2 2
Real part = %
(x"+y7)
. —2xy

Imagina art =——————

ginary p (x2+y2)2

Example 1.10: Find the real and imaginary parts of
the following complex numbers.

(i) 1+8i (ii) (3 -5i)"
(i) (7 + i) (iv) (5-2i)7
Solution:

(i) Letz=1+8i wherex=1,y=38
Therefore real part of z = 1
Imaginary part of z = 8

(i)  Letz= 3-5i)7",

Herex=3andy= -5

Therefore,
Real part of z = 2x > = 23 > = 3 :i
x+y 3 +(=5" 9+25 34
Imaginary part of z = Y- ) = >
Siaty p 21t (3P+(-5)7° 9425
_
34

(iii) Let z= (7 —i)> Here, x =7, y =—1. Therefore,
Real part of z=x —y*=(7)" (1 -1)"=49 ~1=48
Imaginary part of Z=2xy=2(7)(—1)= —14

(iv) Letz=5-2i. Wherex=15, y=-2

Therefore, 5 X X 5
Xy (5 -(2)
(*+y) (5 +(-2)°T

25-4 21

C(25+4)° 841

Real part of z =




Imaginary part of z =
_ 2(5)(2)
[(5)+(=2)'F

20
(25+4)

20
841

—2xy
(" + %)’

X, +ip, |
2. Real and imaginary parts of X | where
x, +1iy,

n==x1 and +2

X +iy, | X +i
When n =1, | 220 | reduces to _y !
+ly2 lyz
X +i
We have 1_y1
L +1y,
X, +1i
= - ,yl 1, (by rationalization)
X, +1y, x2+ly2
) ) s
_ NN X, X, V),
2 2
X, ),
- xlxz—i(x1y2+y1xz)+y1yz (__1.2__1)
2 2 . -
X+

:(xlxz + y1y2)+i(y1x2 _x1y2)
X+ 9,

x1x2+J/1J’2+ly1yz xlxz

X+, X2+ ys
Therefore,
+
Real part :M
X, =),
Imaginary part = ))I;_C%;lzyz
2TV,
Therefore,
2 2 2
X = X, — +4xx
Real part = ( =N )( 22 y22) i 1% V1 Vs
(xz +), )
i = xlyl(xj_yj)_xzyz(xlz_ylz)
Imaginary part = 2 ( o )2
X+

N V!
When n =1, M reduces to M
Xy T 1y, X, Ty,

. 71 .
We have NED | Nt
X, +1iy, X, + iy
_X +1iy, y X, +1y, (by
X +iy, X+,
rationalization)
_ NNt yle xzyl
2 2 +1
X +n x1 + J’1
Therefore,
Real part :—xzle b 22y !
X+
Imaginary part = M
x2 4+ v?
.V N
When n =2, M reduces to M
X, +1y, X, +1y,
. 2 ( +i )2
+ X
Wehave(x1 l‘ylj: ! ly12
X, 1, (x2+iy2)

) (s

(x2 +ly2)

- [(x -y +2lx1)’1][(x ) 2ix2y2}
)

I:(xz'Hyz (xz lyz ]

(by rationalization)

-1y, )2
)

(x2 -I—ly2 ?

X =¥, ) +4x,2, ),

(x2+52)

-2
+i j
When n = -2, M reduces to M
X, +1), X, +1iy,

(x,+iy, )2
(x,+iy, )2

-2
We have (x,+l.y,J =
X, + iy,

(xz +iy2)2 « (xl _iyl)z
(x, +iy,)’ ()C1 —iy1)2
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(= 2)(x

-, )+ 4x1x2y1y2} + 21|:x2y2(

—N ) xlyl(x22 _yzz)]

(xl +y )2
Therefore,
Real part= (x22 _ y22 )(xl B y12)+ 42X, 0,9,
(x2+p2)
Imaginary part= 2 e (x12 B y12 ) —On (x22 - yzz)
(xl2 + yl2 )2

Example 1.11: Find the real and imaginary parts of
2+yj2
4+5i

Solution:

Letzi =2+ 3iwherex; =2, y1=3

And zo =4 + 5i where x =4, y, =15

Real part of —L = (5" —y 12)(x222_ Y zz)j 46,0,
ZZ (xl + yl )
_ [ =B)1@’ = 5]+ 4Q)HB)5)
(2 +(3)T
o 525
= [4-9][16-25]+480= =
Imaginary part of =
ERRESXCER RN Ca )
z (' + 1))’ |
_ 2{(4)(5)[(2)2 =3’ 1-@ONE@’ - (511
[(2° -(3)] |
{20( 5)=6(-9) |
=2
169 |
:2{ 100+541
. [ —46 1 92
=2
169/~ T69
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@— Skill 1.2
<> Complex Number Properties: Applying
distributive, associative, identity, inverse,
and commutative properties to complex
numbers.

<> Conjugate Characteristics: Understanding
and using the conjugate of a complex
number z.

<> Complex Powers: Analyzing (x+iy)" to
extract real and imaginary parts for various
Powers of n.

Exercise 1.2
1.1fz; = 1 —5iand z> = 4 — 5/ name and verify the
following properties
() zitz2=22+ 2z (i) z/z2=2z2z;

2.z1= -6+ 1i,z2=3—-2iand zz =2 + 3i name and
verify the following properties
(l) z1 + (22 + Z3) = (Z1 + Zz) + z3

(i) z1 (22 23) = (z1 22) z3
What properties are these?
3. If z;

verify

=5+3i,z,=7-2iand z; =3—2i name and

the following properties zi (z2 + z3) = z1 z2 + z1 z3

4. Find the additive inverse of the following
complex numbers.

(i) (V2,—V5)

(iii) 3 + i

s
@ @-3) 1111

5. Find the multiplicative inverse of the following
complex numbers.

i 2+i (i) (-1,3) (iii) 7+9i
6. Letzy =2 + 4i and z = 1 — 3i. Verify for this z;

and z; that Z, ¥z, =2+ Z, .

7. Letz1 =2 + 3i and z2 = 2 — 3i. Verify for this z;
and z, that 5z, =2z, and | 2L |= 2L,
%) 2

8. Show that for all complex number z; and z».



_lz]

|2, |

Z

2,

0 [ziz]|=|z21]|]|2] (i)

where z># 0.
10. Separate the following into real and

imaginary parts the following complex numbers

(i) 4+i (i) (6—5i)
(iii) (4 - 7i)"! (iv) 2p—qi)”
4-3

L (2-3Y
Yo o (4+5i)

(vii) V2-i (viii) 1+ |
V2+i 1-2i

Student Learning Outcomes —@

<> Solve the simultaneous linear equations with
Solution of

complex coefficients
ST End
equations e
To find the solution of different
equations in complex variables

either with real or complex co- efficient, we use some

techniques which we used to find the solution of
simultaneous linear equations.

1.9.1 Solution of Simultaneous LineariEquations
with Complex Co-efficients

This topic explores the resolution of simultaneous
linear equations with complex coefficients.
Interestingly, solving a complex linear system
closely parallels the process of solving a system of
two linear equations. We will examine the methods
and principles that underlie this approach

Consider the following equation
lz+ mw=n
where /,m and n are complex numbers. The
equation (1) is called a linear equation in two
complex variables (or unknown) z and w.

liz+ mw= n;

These two equations together form a system of linear
equations in two variables z and w.
The linear equations in two variables are also known

as simultaneous linear equations.

For example
5z—(3+i)w=T-i
(2—i)z+2iw: —1+1i

is a system of linear equations with complex co—

efficients.

A solution of a system in two variables z and w is an
ordered pair (z,w) such that both the equations in the
system are satisfied. For example consider system
(iii). The ordered pair (z,w) where z= 1+ i and w =

2i is a solution of (iii) because if we replace z by 1+
i and w by 2, then both the equations are satisfied.
The process of finding all solutions of the system of
equations is known as solving the system.

Here we shall find solution of a system of two
equations with complex co-efficients in two
variables z and w. The simple rule for solving such
system of equations is the “Method of Elimination
and Substitution”.

(1) If necessary, multiply each equation by a
constant so that the co-efficient of one
variable in equation is the same.

(i1) Add or subtract the resulting equations to
eliminate one variable, thus getting an
equation in one variable.

(i11))  Solve the equation in one variable obtained
in step-2.

(iv)  Put the known value of one variable in either
of the original equation in step-1 and solve
for the other variable.

(v) Writing together the corresponding values of
the variables in the form of ordered pairs
gives solution of the system.

Example 1.12: Solve the simultaneous linear

equations with complex co-efficients.

5z—3+iw=7-1i

2-iz+2iw=-1+i
Solution: Since,
S5z—B3+iw=7-1i

Complex Numbers /



Q-iz+2iw=-1+i .. (i1)
Multiplying equation (i) by (2 — i) we have
52-iz-CB+DR2-w=(T-i)2-1i)

= 5Q2-0)z—(6-3i+2i—Pyw=14-Ti =2+ 7’
= 5Q-iz—(6—i+thw=14-9i—1 (i’=-1

=52-)z-T-iw=13-9 ... (1ii)
Multiplying equation (ii) by 5, we have
52-iz+10iw=-5+5 ... (iv)
Subtracting equation (iii) from equation (iv), we
have
52 - i)z +10iw =-5+5i

52 -i)z F (7T—iw=—13 F 9

10iw + (7 —i)w=-18 + 14i
= (7+9%)w=-18+ 14i

-18+14i
= wE——
7+ 9i
-18+14i 7-9i Y ¢
= w= X (by rationalization)
7+9  T7-9i
e 260i py
130

By putting the value of w in (1), we have
5z—-3+D2i)=7-i
= 5z—(6i+2i)=7—i

= Sz—(6i-2)=T—1i
= Sz=T—i+6i-2

= Sz=5+5i

= Z:5+5i=1+l

Thus (z,w) where z = [ + i and w = 2i is the solution
of the simultaneous linear equations.

7)— skill 1.3
Complex Linear Equation Solution:
Mastering the solution of linear
equations with complex coefficients

Exercise 1.3

1.Solve the simultaneous linear equations with
complex co-efficient.

3z4+4w =2 z+ 2w =10-3i
Dw=15i ... 2z+w=4+i
(i) z+ (2 +i)w = 15i Gy) 22tw i

(4—1i)z—3w = 3i 6z —w =8+ 2i

z—iw=3+2i W@ tT2Dz+w=7
™ 2st-3wesi ) z—dw=1-i

Mathematical modelling is a technique using which we can represent a physical system by an equation or a
set of equations. Once an equation or a set of equations has been developed, they must be solved to obtain
results. These results can provide us with useful information regarding the system. This technique is widely
used in all science fields such as physics, chemistry, and biology to predict the behaviors of physical systems.
Mathematical models are mostly built around theoretical principles or hypotheses. A mathematical model
built upon a theory or hypothesis is often used to obtain numerical data which can be compared with

experimental results to validate the hypothesis.

Using mathematical models in physics, we can model how planets move in space. In chemistry, we can
predict what happens when different chemicals mix. In biology, we can understand how a population of an
animal species changes over time. So, these models help us make sense of the world. They give us clues and
help us solve the mysteries of how things work in the world around us.
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Example 1.13:

Assume a ball of mass 200g is thrown up in the air
with an initial velocity of 10 m/s. Calculate the
maximum height it reaches 2s after leaving the
ground.

Solution

This case deals with projectile motion. The height at
any given time can be obtained by using the second

. . 1
equation motion: /= v+ 5 gt’

We can factorize it to obtain:

Inserting the wvalues of parameters provided
h=10(10+%(—9.8)(2))
h=20m

An interesting thing to note here is that the height
attained by the ball is independent of its mass as we
do not see mass in the mathematical model. This
simple problem also illustrates that we can calculate
the speed a particular object must be thrown to attain
a particular height. This simple model can be used to
understand the principle upon which projectiles
work.

Example 1.14:

The total energy possessed by a system can be
expressed as a sum of both kinetic and potential
energies. Let an object of mass 0.2 kg be placed at a
height of 100m with no initial velocity. Now the ball
starts falling and about 5s after falling, the velocity of
the object is given by 50 m/s. Calculate its total
energy.

Hint: Follow Example 1 to calculate height.
Solution:

Firstly, we develop the equation for the height of the

object: h=vt+ %gt2

1
h=(0)t+—gt’
( )t+2gt

1
h=—gt’
2g

Now, we need to develop the equation for total
energy.

K.E= %mv2 and P.E =mgh

Total Energy = Kinetic Energy + Potential Energy

Total Energy = %mv2 + mgh

Complex Numbers Chapter 1



Now, inserting the value of h that we have calculated
earlier:

Total Energy = %mv2 + mg(%gtz j

1
Total Energy = Em(v2 + g2t2)
Now, inserting the values provided:
Total Energy = %(0.2)(502 +(—9.8)2 (5)2)

Total Energy =490.1.J

In this problem, it was observed that sometimes to
create a mathematical model another one might be
incorporated into it to attain a final model. In complex
engineering problems, there are many parameters that
come into play. Each of these parameters might be
dependent on different simpler parameters.
Therefore, it is common practice to combine different
models in order to simplify a complex problem.

Example 1.15:

A population of rabbits starts with 2 individuals and
doubles every month. What will be the population
after an year? Use the exponential growth formula

P =P x2" where P is the population after time t, P,

is the initial population, and t is the time in months.
Solution

The data provided in the problem statement is as
follows:
B=2
t =1year =12months

Now putting these values into the mathematical
model provided, we get:

P=2x2"
P=8192

This problem shows how a single pair of animals if
bred correctly can create a massive population of a
single species. Although in real scenarios a lot of
other factors come into play and a much complex
mathematical model might be used, this simple
problem still provides critical information for

\ Complex Numbers

biologists which are working with endangered
animals.

Example 1.16:

Suppose you have a balloon with a volume of 1.5
litres at a temperature of 25 degrees Celsius. If the
balloon is heated to a new temperature of 75 degrees
Celsius while the pressure remains constant, what will
be the new volume of the balloon? Use the Charles

V. 7, . o .

—L =-2 where T, is the initial temperature, V| is
1 2

the initial volume, T is the final temperature and V»

1s the final volume.

law:

Solution

The data provided in the problem statement is as
follows:
Vi=15litres T =25°C=298K T,=75°C=348K
Now putting these values into the mathematical
model provided, we get:
Ls_ 7,
298 348

V, =1.75litres

This problem demonstrates the behavior of gases. The
balloon is merely a container for air which is the gas
under observation in this problem. This exact
principle is used in hot air balloons where the volume
of the balloon is increased by increasing the
temperature of the air trapped inside it.

Exercise 1.4

1. A stone is thrown horizontally off a cliff with an

initial speed of 10 m/s. Calculate the time it takes
for the stone to reach the ground. Use the equation

h :% gt’, where h is the distance fallen (height

of the cliff), g is the acceleration due to gravity,

and t is the time of fall.
Stone

Cliff:



A projectile is launched with an initial velocity of
20 m/s at an angle of 30 degrees above the
horizontal. Determine the maximum height
reached by the projectile. Use the kinematic

2

. v, . .
equation h= 24 where vy is the vertical
g

component of the initial velocity and g is the
acceleration due to gravity.

A mass-spring system undergoes simple
harmonic motion with a period of 2 seconds. Find
the mass of the object attached to the spring if the
spring constant is 100 N/m. The period of a mass-

spring system is given by 7' = 2%\/% where T is

the period, m is the mass, and k is the spring
constant.

A student is conducting an experiment with a
concave mirror. The mirror has a focal length of
15 cm. If an object is placed 30 cm in front of the
mirror, determine the image distance and state
whether the image is real or virtual. Hint: Use the
mirror formula for concave mirrors, which is
given by N — + s where f'is the focal length of
fop oq
the mirror, p is the object distance, and q is the
image distance.

A population of rabbits starts with 50 individuals
and doubles every year. How many years will it
take for the population to reach 500. Use the

exponential growth formula P= P, x 2" where P

is the population after time t, P, is the initial

0.03 per
minute. If the initial population is 100 bacteria,

A bacterial culture grows at a rate of

find the population after 20 minutes. Apply the
exponential growth formula P= P, x e where P

is the population after time t, P, is the initial
population, r is the growth rate and t is the time in
minutes.

A population of rabbits in a forest grows at a rate
of 10% per year. If the initial population is 200
rabbits, determine the population after 5 years.
Use the formula for compound interest to model
the exponential growth of the rabbit population:

P=P ><(1+r)' where P is the population after

time, P, is the initial population, r is the growth
rate and t is the time in years.

A chemical reaction has a rate constant of 0.02 s
!, Calculate the half-life of the reaction. The half-
life (t12) is related to the rate constant (k) by the

. _In(2) :
equation: ¢,,, = & where k is the rate constant.
A reaction is second order with respect to reactant
A. If the initial concentration of A is 0.1 M and
the rate constant is 0.05 M s, calculate the
concentration of reactant A after 20 seconds. Use
the  second-order integrated rate law:

[A]t :—kt where [Ao] is the initial
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11.

concentration, k is the rate constant and t is the Review Exercise 1

i ki . .
tme taken. Each of the questions or incomplete statement below

\ is followed by four suggested answers
> or completions. In each case, select
the one that is the best of the choices.
(i) Ifx*=—9 thenx =

0. A certain amount of gas is initially in a container (@) 3 (b) -3
with a volume of 3 m® at a pressure of 1 atm. If (c) 3i (d) £3i
the gas is compressed, and the volume is reduced (i) The real part of complex number z = 7i is:
to 2 m*, what will be the new pressure of the gas (a) 0 (b)7

if the temperature remains constant? Use the (c) -7 (d) 1

Boyle’s law: BV, = PJV, where P; is the initial ..
) 0 ) (iii)  The imaginary part of complex number z = 8
pressure, Vi is the initial volume, P is the final +10i-

pressure and V3 is the final volume.

(a) 0 (b) 10
Calculate the pH value of a 0.05 M solution of (c) 20 (d) 8

. . . _ + 1
HNO. Hint: Use the equation pH =-log [H :l (iv):  The additive inverse of 3+§i is

where [H *] represents the concentration of H'

2 2
0ns. (a) 6+ (b) 6—;
12. You are given a solution of hydrochloric acid ) -3 1 i d) 3- 1 i
(HCI) with a concentration of 0.5 moles per litre
(M). You need to prepare 250 milli-litres of a new v) The multiplicative identity of complex
solution with a concentration of 0.2 M. Determine number is:
the volume of the original 0.5 M solution needed (@) 0 (b) 1
and the amount of water (in milli-litres) to be © 2 @) 3

added to achieve this new concentration. Use the

dilution formula MV, = M.V, where M, is the (vi)  The additive identity of a complex number
o ‘ . . is:

initial concentration, V; is the initial volume, M»

is the final concentration and V» is the final (a 0 (b) 1

volume. (c) 2 (d 3

(vii) T ________

(a) —25i (b) 25

(c) 25 (d) 25i
(viii) %=

(a) 1 (b) -1

(c) i (d) —i
(ix)  The conjugate of 7 + 4i is

(a) —7+4i (by 7—4i
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(c) —7-4i (d) 7+4i

(x) If we replace i by —i in z =x + iy then
another complex number obtained is known
as:

(a) Primer factor of z (b) Reciprocal of z
(¢) Additive inverse of z (d) Complex conjugate of z

(xi) Ifzi=3+iandz;=1+4ithen Re(zi —z2) =

(a) -3 (b) 2
(c) 3 (d) 4
i) [z+zl=_
(@ |zi]—]z,]| (d) |z |-|z2]
(©) |zt|+]zz2] (d) |z [+]z]

(xii))  x*+)* =

(@) (x+y)(x—=y) (b) (x+y)(x—y)

(© xty)x-y) (d) x+y) -y
(xiv) If|z*|+1=] z* —1] then z lies on:

(a) acircle (b) real axis

(c) imaginary axis  (d) non of the above
(xv)  the conjugate of the complex number six x —
i cos 2x is:

(a) sinx+icos2x (b) cosx—isin2x
(c) —sinx—icos2x (d) —=sin +i cos2x

1. Why is the imaginary unit i defined as the square
root of -1, and how does this help in solving
equations that have no real solutions?

2. How do complex numbers help in finding the
roots of equations that real numbers alone cannot
solve?

10.
11.

12.

13.

14.
15.

Create a complex number whose real part is 3
and imaginary part is -4. What is its modulus?

Form a complex number z where the real part is
half of the imaginary part and the modulus of z is
5.

For z=4+3i, find the complex conjugate and the
modulus of both z and its conjugate.

Explain why the modulus of a complex number
is always a non-negative value.

If z1=2+i and z;=3— 2, calculate z; +z; and z1—z».
Show that multiplication of complex numbers is

commutative by calculating z1.z> and z»-z1 for z;
=1+2i and zo=—2+1.

Prove that the product of a complex number
z=1+31i and its conjugate is a real number.

If z=2-5i, calculate z.z and interpret the result.

Plot the complex number z=2+3 i on an Argand
diagram and then plot its conjugate. Describe
what you observe.

Draw the complex numbers zi=1+i and z,=—1—i
on an Argand diagram and discuss their
positions in relation to each other.

If z is a complex number such that z+Zz =6 and
the imaginary part of z is 4, find z.

Solve for z in the equation 2z —3Z =4+ 6i.

Describe a simple scenario where complex
numbers might be used in everyday life.
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Summary

N

Understanding Complex Numbers: A complex number is expressed as z=a + bi, where a
and b are real numbers, and i is the imaginary unit (i* =—1)

Complex Conjugates: The complex conjugate of a complex number z =a + bi is z=a—phi.
Modulus of Complex Numbers: The modulus (or absolute value) of a complex number

|z|=+/a’ +b" , representing its distance from the origin in the complex plane.

Properties of Complex Numbers: Complex numbers follow algebraic properties like
distributive, associative, and commutative laws, similar to real numbers.
Properties of Conjugate: The conjugate of a complex number has properties like

- 1S - 7 2|, A

\z|=|-z|=|z|=|-z|, z=2, zz=|z|", 2z +z,=2z1+22, z;Z,=21+ 22, (—j-‘r——,Zz #0.
) V)

Real and Imaginary Parts of Powers of Complex Numbers: For a complex number
z=x+iy, powers like z" can be expanded to separate real and imaginary parts
Solving Complex Linear Equations: Solve complex coefficient linear equations with
algebraic methods: substitution and elimination.
Geometric Interpretation: Complex numbers on the Argand diagram enable geometric
interpretation of operations, with real parts on the x-axis and imaginary parts on the y-axis
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Matrices play an indispensable role in the world of digital imaging and graphics, a crucial element of modern
digital communication and entertainment. These structured arrays of numbers are not just mathematical
constructs; they are essential for transforming, compressing and rendering images and videos. By applying
matrices, engineers and computer scientists can manipulate pixels in images to adjust brightness, contrast and
even perform complex operations like rotation and scaling with precision and efficiency. This process is
fundamental in everything from the crystal-clear visuals in blockbuster movies to the sharp and responsive
graphics in video games. Matrices enable the seamless digital reconstruction of visual reality, making them a
pivotal tool in the creation and compression of digital media. Their application in this field underscores the
profound impact of mathematical concepts on enhancing and innovating visual technology.

Matrices




Students Learnlng Outcomes

Display information in the form of matrix of order 2.
Solve situations involving sum, difference, and product of two matrices

Calculate the product of the scalar quantity and a matrix .

Evaluate the determinant and inverse of a matrix of order 2 x 2.

Solve the simultaneous linear equations in two variables using matrix inversion method and Cramer's rule
Explain, with examples, how mathematics plays a key role in the development of new scientific theories and
technologies. [e.g., Mathematical models and simulations are used to design and optimize new materials and
drugs, and to understand the behaviour of complex systems such as the human brain. |

Apply concepts of matrices to real world problems (such as engineering, economics, computer graphics, and
physics).

J Knowledge

(J Understanding of a 2x2 Matrix: Comprehension of the structure and representation of a 2x2 matrix.

(¥J Matrix Operations: Familiarity with the rules and principles for performing addition, subtraction, and multiplication of
matrices.

(¥J Scalar Multiplication in Matrices: Knowledge of how scalar values interact with matrices during multiplication.

(Y] Determinant and Inverse of 2x2 Matrices: Understanding the concepts and calculation methods for determinants and

inverses of 2x2 matrices.

(¥J Matrix Inversion and Cramer's Rule: Comprehension of matrix inversion and Cramer's rule as techniques for solving
systems of linear equations.

(¥J Role of Mathematics in Science and Technology: Awareness of how mathematical models and simulations are integral to
scientific and technological advancements.

(¥J Application of Matrices in Various Fields: Understanding of the practical applications of matrices in engineering,
economics, computer graphics, and physics.

(&% Skill

(¥J Matrix Representation: Ability to organize and present data or information in a

2x2 matrix format. . . . N Pre & Post Requisite |

(] Performing Matrix Operations: Competence in executing matrix addition,
subtraction, and multiplication, especially with 2x2 matrices.

(] Scalar and Matrix Multiplication: Skill in multiplying matrices by scalar Class 10
quantities and understanding the outcomes. Chapter # 2
(¥ Calculating Determinants and Inverses: Proficiency in determining the Matrices

determinant and inverse of 2x2 matrices and interpreting their significance.

7] Solving Linear Systems: Capability to use matrix inversion and Cramer's rule to Class 11
find solutions to systems of linear equations.

(] Explaining Mathematical Applications: Ability to articulate and exemplify the Cha}? ter # 2
role of mathematics in the development of new scientific theories and technologies. Matrlce.s and

(¥ Practical Application of Matrix Concepts: Aptitude for applying matrix theory to Determinants
solve real-world problems in various professional and academic fields.
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Student Learning Outcomes —@
< Display information in the form of matrix of order

2 by 2

VAN INTRODUCTION TO MATRICES

The word 'matrices' is plural of the word 'matrix'. The
first introduced by the
mathematician Arther Cayley in 1860. The
knowledge of matrices is necessary in various areas
of Mathematics. It has widely been used in the fields
of pure mathematics, statistics, engineering and
physical and social sciences. Thus, matrix theory

term matrix was

finds an important place in modern age and has
become an integral part of mathematics.

Matrices make presentation of numbers clearer and
make calculations easier.

The following table presents the sales figures for
Smartphones and Tablets in January and February.

January | February
Smartphones 300 350
Tablets 250 280

The information is readily available when presented
in this way. For example, if we want to know the sales
figures for Tablets in February, we go along the row
'"Tablets' and column 'February' and find that it is 280.
As long as we remember what each number
represents, we could remove the row and column
headings and write just the numbers, enclosing them
in square brackets or parentheses such as

[300 350
250 280

For instance, if the temperatures for City A and City B
over Day 1 and Day 2 are as follows:

o City A, Day 1: 75°F
o City A, Day 2: 80°F
o City B, Day 1: 68°F

o City B, Day 2: 72°F

Day 1 Day 2
City A 75
City B 68

Let us denote this by 4.

75 80| . .
Thus 4= 1S a matrix.
68 72

A matrix is a rectangular array (arrangements) of real
numbers enclosed in square brackets. Each number in
a matrix is called an element or entry of the matrix.

2 31|-1 1 2
For example , and
6 5(13 4 5

3 4 2
11 =2
=4 =3 -3

are all matrices. In the matrix

3
6 5} the number 2,3,6,5 are the elements or
entries of the matrix. Similarly in the matrix
3 4 2
-1 1 =2/, the numbers

4 -3 3

3,4,2,—1,1,—-2,—4,-3,—5 are the elements or entries

of the given matrix. Matrices are frequently denoted
by capital letters such as A, B, C and so on. Thus we
can write

2 3 -1 1 2
A= ,B= ,C=l-1 1 =2
H TS

2.1.2 Rows and Columns of Matrix

The rows of a matrix run horizontally, and the
columns of a matrix run vertically.

To make the idea more clear, let us consider the
following data and make a matrix .

In a survey of 600 customers regarding their
preferences for three different types of electronic
devices, the following information was obtained:

Matrices / |



¢ 200 male customers preferred smartphones

e 150 male customers preferred tablets

¢ 50 male customers preferred laptops

e 180 female customers preferred smartphones
¢ 90 female customers preferred tablets

e 30 female customers preferred laptops

We can arrange these data in a rectangular array as
follows:

Gender | Smartphones | Tablets | Laptops
Males 200 150 50
Females 180 90 30

or as the matrix
200 150 50
180 30

This matrix has two rows (representing males and
females) and three columns (representing
"smartphones," "tablets," and "laptops").

The matrix we developed in above Example has 2
rows and 3 columns. In general, a matrix with
‘m’ rows and ‘n’ columns is called an m by n
matrix.The matrix we developed in previous example
is a 2 by 3 matrix and contains 2x3 = 6 entries.

An m by n matrix will contain m X n entries.

| 200 {50
180l 90

=l

Se

2.1.3 Order or Dimension of a Matrix

A matrix with m rows and » columns has order
mxn (read"m by n").

If a matrix has order mxn then m represents the
number of rows and »n represents the number of

columns.

\ Matrices

For example, consider

-3 21 2 1
A= and B=
{2 1 3:| {—4 3}

The order of the matrix A is 2-by-3 or 4 is a 2-by-3
matrix. Similarly the order of the matrix B is 2-by-2
or B is a 2-by-2 matrix.

Note : Order of a matrix mx n does not mean to
multiply m and n .

Remember
Sometimes we will prefer to write the order of a matrix
as m-by-n or sometimes (771X 7).
Order of a matrix is also called dimension or size.

Example 2.1:

Write the number of rows and column of the
following matrices and hence mention their orders.

. 3 47
ii) B=
L 6 8}

Solution:

i)14={p q}
r s

i)(ﬁven44={l’ q}, Order=2 x 2
r S
, 3 4 7
ii) Given B = Order=2x 3
5 6 8

2.1.4 Equality of two Matrices
Two given A and B are said to be equal if:

(i) Both the matrices are of the same order i.e. they
respectively have the same number of rows and
columns.

(ii) The elements in the corresponding positions in
A and B are equal.

For example, the matrices

12 ]
. 2 3 1 1+1 ?
6 5 4 and 0 8 are equal
4+2 — =
2
1 2 _
) 1 2 3
whereas the matrices |3 4| and are
5 6 6 5 4

not equal.



@— Skill 2.1
<> Understanding of a 2 X 2 Matrix:
Comprehension of the structure and
Representation of a 2 X 2 matrix.

Exercise 2.1

1. Using appropriate understanding of data, decide
which data will be represented in rows and which
in columns, and display the information in the form
of a matrix as specified.

(i) A school's cafeteria tracks the number of
vegetarian and non-vegetarian meals sold over two
days. The data is as follows:

e Day 1: 120 vegetarian meals, 80 non-
vegetarian meals

e Day 2: 150 vegetarian meals, 100 non-
vegetarian meals
(ii) A company's quarterly revenue (in thousands of
dollars) from two departments (Sales and
Marketing) is recorded as follows:

e Quarter 1: Sales PKR 200k, Marketing
PKR 150k

e Quarter 2: Sales PKR 220k, Marketing

PKR 160k
(iii) An animal shelter tracks the number of dogs
and cats adopted over two months. The data is as
follows:

e Month 1: 30 dogs, 45 cats

e Month 2: 40 dogs, 50 cats

(iv) A class tracks the scores of two students in two
subjects (History and Geography). The scores are
as follows:

e Student A: History 85, Geography 90
o Student B: History 80, Geography 85

(v) A survey was conducted in two cities (City A
and City B) regarding three different transportation
methods (Bus, Train, Car). The number of people
using each method is as follows:

e City A: 120 people use Bus, 80 people use
Train, 200 people use Car

e City B: 150 people use Bus, 100 people use
Train, 250 people use Car

(vi) A small company has recorded the sales (in
units) of three products (Product X, Product Y, and
Product Z) over four quarters. The sales data is as
follows:

e QI: 50 units of Product X, 70 units of Product
Y, 30 units of Product Z

e Q2: 65 units of Product X, 80 units of Product
Y, 45 units of Product Z

e Q3: 75 units of Product X, 60 units of Product
Y, 50 units of Product Z

e (Q4:90 units of Product X, 85 units of Product
Y, 55 units of Product Z

3 2 -4
=25 0 . .
2.1f A= , then write down the following
2 15 elements.
-3 4 6
@) a, (i) a,, (iii) a,,
(iv) a, (V) ag (vi) a,

3. List the order of the following matrices.

c 2 iy 5[ 4]
VA=l 4 i) &=
1
2 3 -1
iii)C:[ } i) F=|3 2
1 2 5
4 -1
o2 3
v E=[3 2] vi) D=6
00 0

4. Which of the following matrices are equal.
25 25
b B = b
1 3 4 3
I+1 3+2 2 441
C= , D=
ke

2 3 v =3
5.Let A= and B= , for what
u o 5w

A

Matrices /



values of u, v and w,4 and B are equal ?

x+3 z+4 2y-7 0 6 3y-2
6.If | -6 a-1 0 =| -6 -3 2c+2/,
b-3 21 0 2b+4 -21 0

find the values of a,b,c,x,y and z.

7. Solve the following matrix for a,b,c,d .
a+b b+2c| [-1 4
2c+d 2a—-d| |8 0 E%

P28 TYPES OF MATRICES

Matrices are essential mathematical structures used
to organize and manipulate data. Understanding the
different types of matrices is crucial for effectively
applying matrix operations and solving complex
problems. Each type of matrix serves a unique
purpose, allowing for greater flexibility and
efficiency in mathematical computations.

This section explores various types of matrices,
each defined by specific characteristics and
properties. These types include:

2.2.1 Square-matrix

A matrix in which number of rows and columns are
equal is called a square matrix. For example, the

[ m
matrix { } has two rows and two columns, so it
n.p
is a square matrix. The order of the matrix { } 1S
n.p

2-by-2 but for brevity we write the above matrix as a
square matrix of order 2 or 2-square matrix. Similarly

1 2 3
the matrix | 7 8 9| is a square matrix of order 3
-1 -4 2

or 3-square matrix. As a special case the matrix
consisting of a single element say [3] is also a square
matrix of order 1 or a 1-square matrix.

2.2.2 Rectangular-matrix
A matrix whose number of rows and number of
columns are not equal is called rectangular matrix.
b ¢

a
Thus, the matrix {
e

} is a rectangular matrix

\ Matrices

because its number of rows are 2=m and its number
of columns are 3=n; obviously 2#3. Similarly, the

1 4
matrix |3 2| is also a rectangular matrix with
5 -3

order 3-by-2,i.e., number of rows and number of
columns are not equal.

2.2.3 Row-matrix

A matrix which has only row in it is called a row-matrix.
For example, the matrices

[a,b][1 3 4][2 4 6 8] areall row-matrices.

2.2.4 Column-matrix

A matrix which has only one column in it is called
a column matrix.

2
1
a 4
For example, LJ 3| and 6 are all column
matrices. > 8

2.2.5 Zero matrix or Null matrix

Any matrix (whether it is rectangular or square) in
which all the elements (entries) are equal to zero is
said to be a Zero matrix or a Null matrix. Thus,

0 00 0
0 0[|0 O O
, 10|, and |0 O O | are some
0 0[|0 O O
0 0 0 0

examples of zero matrices or null matrices.
The following points are very important to remember.

i) A zero or null matrix is not necessarily a square
matrix.

ii) A null matrix is generally donated by O.

iii) Sometimes we prefer to put the order of a null
matrix as a proper subscript with the general symbol

00
O.Thus, O,, = {0 0} is a null-matrix of order 2.

0 00
0,,= [O 0 0} is a null-matrix of order 2-by-3.



Note: In matrix manipulation, the Zero matrix is similar
to zero in regular algebra. When compatible for
multiplication (discussed later), any matrix multiplied
by the Zero matrix becomes a zero matrix. Choose the
appropriate zero matrix order for problem-solving.

2.2.6 Diagonal matrix

A square matrix in which all elements are zero except
the diagonal elements is known as diagonal matrix.
For example,

1 0
A= {O 3} is a diagonal matrix of order 2 and

2 00
B=|0 3 0 |isadiagonal matrix of order 3.
0 0 -5

2.2.7 Scalar matrix

A square matrix in which all the elements lying on the
main diagonal of the matrix are equal and the
remaining elements of the main diagonal are all zero
is called scalar matrix.

Equivalently scalar matrix can also be defined as,

A diagonal matrix in which all the diagonal elements
are equal is said to be a scalar matrix.

l 0 0
7 0 0]]2
) 1 0 1
For instance, 10 7 0[,/]0 — 0| are
01 2
0 0 7 1
0 0 —
2

scalar matrices of order 2 and 3 respectively.

Scalar matrix is a special case of a diagonal matrix.

Note

Every scalar matrix is a diagonal matrix but
every diagonal matrix is not necessarily a
scalar matrix. For example,

4 0 O
0 3 0 [isadiagonal matrix,because all
0 0 -1

elements of the matrix are zero except the
elements of the main diagonal but the above
matrix is not a scalar matrix because elements
lying on the main diagonal are not equal.

2.2.8 Identity matrix

The identity matrix (also called the unit matrix)

is a square matrix and is denoted by I. It is
characterized by the fact that all elements on its main
diagonal are 1's whereas all other elements are zero.
Sometimes it is useful to write the order of the identity

10
matrix as a subscript of /.Thus, /, =L) J is the

I 00
identity matrix of order 2 and" /;=|0 1 0/ is the
0 01

identity matrix of order 3.)

When there is no danger of ambiguity the identity
matrices /,and 7, are simply denoted by .

Remember Squarle Matrix

[ I
Triangular Matrix Diagnonal Matrix
Atleast one, a; = 0 and a, = 0 if i = j

Upper Triangular Lower Triangular d 0 0
Matrix Matrix 0 d 0
Ifa,=0Vi>)] Ifa;=0V i<j .

0 0 d,

xoxox x 0 0| Abbreviated as dia (d,, d,, dyveoovvovoor..n.dl)
4=10 x «x A=|x x 0 |
0 0 «x X X X | |

Scalar Matrix Unit Matrix
ifd =d,=d,....a=0 ifd=d,=d,....=1

S O Q
S Q o
QI o o
(=l
S = o
_o o

2.2.9 Transpose of a matrix

Suppose we have a matrix A of any given order. The
matrix obtained by interchanging mutually the rows
and columns in A is called the transpose of A4 and is

denoted by A'. For example

1 2 1
If 4= then 4' = 3
3 4 2 4

2.2.10 Symmetric matrix

A square matrix A is said to be symmetric if the
transpose of A denoted by A’ is again equal to 4,
i.e., A= A". For example,

1 2 1 2
If 4= then 4' = ,
2 4 2 4

1 2
We see that A=A4",s0 A= {2 4} is symmetric.

Matrices /




1 2 3 I 2
Similarly if B={2 4 5| thenB =2 4
3 56 35

1 2
iie,B=B",so B=|2 4 is a symmetric
3 5

AN W W

matrix.

2.2.11 Skew-Symmetric matrix

A given square matrix A is said to be Skew-

Symmetric if 4'=-4.

0 -3 0 3
For example: If 4= and A' =
3 0 -3 0

then,

, 10 3 0 -3 ) ,
A = =— =—A4 1e. A '=—A4 so
-3 0 30

0 -3]. . .
0 } is a skew symmetric matrix.

N
I
——
w

Exercise 2.2

1. Which of the following are square and which are
rectangular matrices?

) {2 3} B [6 3 —1}
i) A= ii) B=
0 5 15 2
1 00
iii) C={0 2 0 iv) B =[-5]
001
-1
v) E=[-3 4] vi)F:{J

2. Write transpose of the following matrices:

.P_12 oo Lom
1.—31 11.Q—np

-5 1
iii. R=[6] iv. S=-2 1
4 4
6 7 8
v.T=[13 1 3
2 45

\ Matrices

3
5(=B
6

3. Which of the following matrices are transpose of
each other?

A= ® iop=|® b
b b, a, b,

-3 4
-3 1 -1 .
1. C= w. D= 1 2
4 2 7
-1 7

4. Which of the following matrices are symmetric?

. 5 -7 \ -1 2
1. A= 1. B=
S A

3 4 ) 1 2 3
. C= . D=
s i
5. Which of the following matrices are skew-
symmetric?
_ 0 4] ) 0 -5
1. A= . B=
—4 0, 50
- 0 3 2
0 7 .
. C= wv. D=|-3 0 1
7 0
- -2 -1 0

v

Student Learning Outcomes —@

<> Solve situations involving sum, difference, and
product of two matrices.

<> Calculate the product of the scalar quantity and a

matrix.
i
yRIM ADDITION AND S
SUBTRACTION OF MATRICES
This section covers the basics of adding and

subtracting matrices, essential for solving matrix
equations and analyzing data in various fields.

2.3.1 Conformability for Addition/subtraction of
matrices

Suppose that we have two matrices. These two matrices
may be added or subtracted if andonly if they are of the
same order.

Example 2.2:

. 1 3 4 7
i) Let A= and B= then these
-3 2 10 13



matrices are conformable for addition and
subtraction because both are 2-by-2 matrices,that is
both matrices are of the same order.

73 9 5 13
i) Let C= and D={10 -1 1 |,then
-2 0 5
2 0 3

Cand D are not conformable for addition and
subtraction because their orders are not same.

2.3.2 Addition and subtraction of matrices
a) Addition of two matrices

Suppose 4 and B are conformable for addition. Their
sum A+ B is obtained by adding corresponding
elements of the matrices 4 and B.

3 8 4 0
Let 4= and B =
4 6 1 -9

We see that 4 and B both are 2-by-2 matrices, so these
are conformable for addition.

3 8 4 0 3+4 840 7 8
4 6 1 -9 4+1 6-9 5 =3
b) Subtraction of two matrices

Let A and B are two matrices which are of the same
order and so these are conformable for subtraction.
Their difference A-B is obtained by subtracting each
element of B form the corresponding element of 4.
For example

3 8 4 0
Let A= and B =
4 6 1 -9

Both the matrices are of the same order, so these are
conformable for subtraction.

3 8][4 0]
A-B= -
P

[3-4 8-0 ] [3-4 8-0°
141 6—@9)_{¢4 6+9)

2.3.3 Multiplication of a matrix by a real number

Let A be any matrix and £ is any real number. The
matrix obtained by multiplying each element of 4
by the real number k is called the scalar
multiplication of 4 by & and it is denoted by k4 .

4 0 8 2
For example : 2 =
{ 1 —9} {2 -1 8}

. 6 2
i.lf A=
-3 1
6x3 2x3 18 6
then 34 = =
-3x3 1x3 -9 3

5 4 7
ii. If B=
[—3 a b}

7% 5 Tx 4 7><7}

7%(=3) 7a b
[ 35 28 49
1221 74 7b

2.3.4 Commutative and associative laws under
addition

then 7B = [

a) Commutative law under addition

Let 4 and Bare two given matrices of the same order
then A+ B =B+ A. This is called commutative law
of matrices under addition.

Now we give some examples in support of the above

law.

Example 2.3:

25 -2
Let A= and B=
4 7 -3

the same order and hence these matrices can be
added.
Solution:

oy SFE 0 S0

Matrices /

1
6} then 4 & B are of

|



, 2112 5
Again B+ A= +
-3 6| |4 7
B -2+2 1+5 B 0 6
| =3+4 6+7| |1 13

. 0 6
1.e. B+ 4=
1 13

This proves that A+ B=B+ A4

(b) Associative law for matrix addition

Let A, B and C are three matrices of the same order,
that is, these are conformable for addition.

Then A+(B+C)=(A+B)+C

This is called associative law for matrix addition.

Now we give an example in support of the above law.

2 4 -5 3 2
,B= and C = ,
-3 6 7 1 0

then all these matrices are of the same order, so
these are conformable for addition.

Example 2.4:

-1
Let Az[
4

Now

LI R (R i
s PG P S ey Rl

- [_41: 77 —23;77} - A+(B+C)= {161 _45}
Again

-1 2[4 5]\ [3 =2
(A+B)+C= + +

4 3|6 7)1 0
[-1+4 2+(-5) NER
46 347 ] [1 0
'3 3] [3 -2
= +
10 4| [1 0
343 -3-2
1041 440

\ Matrices

:[161 _45}
5 A+(B+C)=(4+B)+C

2.3.5 Additive identity of matrices

In ordinary arithmetic 0 (zero) is called additive
identity because when 0 is added to any real number
or when any real number is added to 0, the value of
the number does not change. For example,

0+5=5+0=5,
l+0:0+l=l
3 3 3

and \/7+O=O+\/7=\/7 and so on.

In theory of matrices, zero matrix (or Null-matrix)
denoted by O performs the same function as 0 in
ordinary arithmetic because when O is added to any
matrix A or if A is added to the matrix O, the matrix

A does not change provided O and A are conformable

for addition. In such a situation A + O = O + A = A.
Definition:

In the theory of matrix a Zero or (Null) matrix of
some specific order serves as the additive identity
for the matrices of the same specific order.

Here,we give some examples to make the idea more clear.

Example 2.5:
3 -1 e
If A= L s } then the additive identity for such a

0 0
caseis O= [0 O} because A and O are conformable

for addition.

(3 —1] [0 0] [3+0 —1+0] [3 -1
A+0= + = = =4
12 5] [0 0] [2+0 5+0] |2 5

Also,
[0 0] [3 —-1] [0+3 0-1 3 -1
O+ A= + = = =4
0 0] |2 5] [0+2 0+5] |2 5

Therefore, A+ O=0+ A= 4.



0 0f. e 3 -1
0= is additive identity of 4 = . But
0 0 2 5

0 0
at the same time O = {0 O} is additive identity for

all 2-square matrices.
2.3.6 Additive inverse of a matrix

Let 4 and B be two matrices of the same order. If

A and B are so related together that A+ B=0 =B+ 4
where O is the identity matrix of the same order as
that of order of 4 or B, then B is called the

additive inverse of 4 and likewise A4 is called the
additive inverse of B. In other words B =—-A4 which
implies that A=-B i.e, 4 and B are additive inverses
of each other.

Example 2.6:
3 2 -1 -3 -2 1
Prove that P= ,0= are
-2 4 6 2 -4 -6
additive inverse of each other.
Solution:
Since,
3 2 -1 -3 -2 1 0 0 0
-2 4 6 2 -4 -6 0 0 0
-3 -2 1 3 2 -1 0 0 0
O+P= - = -0
2 -4 -6 -2 4 6 0 0O

Hence, P and Q are additive inverses of each other.

73— skill 2.3

<> Matrix Operations: Familiarity with the
rules and principles for performing addition,
subtraction

<> Scalar Multiplication in  Matrices:

Knowledge of how scalar values interact with
matrices during multiplication.

Exercise 2.3

1. Let 4 and B be 2-by-3 matrices and let C and Dbe
2-square matrices. Which of the following
matrix operations are defined. For those which
are defined, give the dimension of the resulting
matrix.

10.

i) A+B
iii) 3 4-2C

i) B+D
iv) 7C+2D
Multiply the following matrices by the real

numbers as indicated.
1

1) Multiply 4=|2| by2
3

a C
ii) Multiply B = b R
) Multiply [d f} y pPe

1 2 =3 =2

If A=|3 4| and B=| 1 =5, then find
56 4 3

34-B.
2 =2 8 0

If A= 4 2 |and B=|4 -2/, then find
=5 1 3 6

the matrix X suchthat 24+3X =58R.

Find x,y,z and w if
6 4
3 Xyl | N x+y.
z w -1 2w 3+w 3

5 2
Find X aninfX+Y:[O 9} and
3 6
X-Y= .

-3 25 3 -1
,B= and C = )
o= Yfmacsl ]
If ¢=2 and d =—4 then verify that:
i) (c+d)A=cA+dA
ii) c(A+B)=cA+cB
iii) cd(A)zc(dA)

2
Let A=[
4

-1 2 3 3 -1 2
Let A=| 4 2 0[,B=|-5 3 4| and
325 3 4 0
2 -3 6
c=|0 4 -1/
5 1 3

Matrices /



Compute the following if possible.
i) A+2B ii) 34-4B
i) (4+B)-C iv) A+(B+C)

11. Prove that in the following matrices
commutative law of addition holds.

i) A= ,B=
2 4 2 2

3 4 -5 3 45
i) C= ,D=
2 3 1 1 23

12. Find the additive inverse of the following

matrices.
3 4
i) A=
6 2
a —-a b
ii) B=|-—c a -b
I m n

13. Show that the following matrices are additive
inverses of each other.

i) A=[1-2 3].B=[-1 2 -3]

a -b —a b
ii) C= D=
[—c d } ¢ —d }

1 -2 4] 12 4
i) E=| 2 1 3| F=l-2 -1 -3
-3 4 -2 3

MULTIPLIGATION OF MATRICES

2.4.1 Conformability for multiplication of
matrices

Two matrices 4 and B are said to be conformable for
multiplication AB, only when the number of columns
of matrix A is equal to the number of rows of matrix
B. The product AB, which is not the same as the
product BA, is conformable for multiplication only if
A is an m X p and matrix B is a p X n matrix. The
product AB will then be an m xn matrix. A
convenient way to determine whether two matrices
are conformable for multiplication, and to determine
the order of the resultant matrix, is to write the orders
of the two matrices side-by-side as shown below.

\ Matrices

AvY VB

m x p p %X n

A

This shows that 4 and B are conformable for

multiplication as p = p. It also indicates that the
order of the product 4B is m X n.

Thus Ay X Byxn = ABpxn-

B ; VA
Pxn m X P
Here, A and B are not conformable for multiplication
since n # m. Thus,product BA is not defined.

For matrix multiplication, the operation is row by
column. Thus, to obtain the product AB, we multiply
each element of a row of A by the corresponding
element of a column of Band then we add these
products.

A B C
ooy Oomgoo ooood
EERER OmE000 omood
O0O00O * OmO00 = 0oodd
oot Omodd (|
uboono  Omood (|

For Example:

Suppose A is a 3-by-4 matrix, B is a 4-by-2 matrix
and Cis a 4-by-3 matrix.

Then AB is defined and it is 3-by-2 matrix. AC is

defined and it is 3-by-3 i.e. 3 -square matrix CA is

also defined and it is a 4-by-4 matrix while BA, CB
and BA are undefined.

Example 2.7:

2 3 3
If 4= and B = , then
1 4 5

i) is it possible to find both AB and B4 ?
ii) find the product if possible. [’ﬁ

Solution:

) 2 3 3
Given 4 = and B=
1 4 5

i) First we check whether AB is possible.




Number of columns in 4 are 2 and Number of rows
in B are 2. Therefore, AB is possible.

B 2 37[3] [2x3+3x5] [6+15] [21
11 45| |1x3+4x5]| |3+20] |23

21
.. AB=

Now,we discuss the existence of the product B4 .

Since number of columns in B =1 and numbers of
rowsind4 =2.Since 1#2,soBAis not possible.

ii) The only possible product is AB and its value is
21

AB =
23

2.4.2 Commutative Law of Multiplication of

Matrices

Commutative law of multiplication of matrices in
general does not hold as shown in the following
example.

Example 2.8:

Solution:
6 3 -3 2
Let A= , B= )
25 1 5
Determine whether AB = BA.
6 3||-3 2 -15 27
AB = =
{2 5}{ 1 5} {—1 29}
-3 2|6 3 -14 1
BA = -
{ 1 5}{2 5} [ 16 28}

Here, we have AB # BA.

The above example shows that matrix multiplication

is not commutative in general, that is AB # BA.
Though it can happen that AB = BA.

Now we give an example of matrices for which
commutative property of multiplication is true.

1 2 2 2
Example 2.9:1f Let 4= and B = )
3 4 3

9]

show that AB = BA.

Solution:
I 22 2 Ix2+2x3 1x2+2x5
A8 :[3 4}[3 5}{3x2+4x3 3><2+4><5}
246 2+10] [8 12
:{6+12 6+2o}{18 23}
Now
BA:F 2}{1 2}:{2x1+2x3 2x2+2x4}
3 5|[3 4] |[3x1+5%x30 3x245x4
246 4+8 ] [8 12
{3“5 6+2o}{18 26}

Here, we have AB = BA. So the given matrices
commute.

2.4.3 Associative law under multiplication

If A, B and C are three matrices such that 4 is m-by-n
matrix, B is n -by-p matrix and C is p-by- g matrix.
Then 4(BC)=(4B)C

This is called the associative law of matrices under
multiplication.

Example 2.10:

1 1 2 )
If 4= 5 ,B=[3 2],C= 3 4l then verify that

A(BC) = (AB)C.
Solution:

BC=[3 2]@ ﬂ:[3x1+2x31 3x2+2x 4]

=[3+6 6+8]=[9 14]
1x9 1><14}

A(BC)= MP 14]= {2>< 9 2x4

1 Ix3 1x2 3 2
AB = [3 2]: =
2 2x3 2x2 6 4
3 2011 2 3x1+2x3 3x2+2x4
(4B)C = =
6 4|3 4 6x1+4x3 6x2+4x4

a 3+6 6+8 _9 14 (ii)
Tle+12 12+6| |18 28|

Matrices / |



From (i) and (ii), we have A(BC) = (AB)C.

This verifies associative law of matrix
multiplication.

2.4.4 Distributive laws of multiplication over
addition
Let 4, B and C are three matrices such that 4 is a m-n

by-nmatrix, B is an-by-p matrix and C is also a n-
by-p matrix.
A(B+C)=A4B+ AC and (A+B)C=AC+BC

These are called distributive laws of multiplication
over addition.

We try to verify these laws by choosing matrices of
suitable order in the following example.
Example 2.11:

[ 2 _[5 3 _[6 2 .
IfA= [3 4],B = [2 2],C = [5 1].Verlfythe
distributive of multiplication over addition.
Solution:

We see 4, B and C are 2-by-2 matrices. Hence they
are conformable for multiplication and addition.

5 3] [6 2] [5+6 3+2] [11°5
B+C= + = =
2 4| |5 1 245 441 |7 5
1 2111 5 Ix11+2x7 1x5+2x5
aseo-ly 3 2 )
3 417 5 3x11+4x7 3x5+4x5
C[11+14 5+10 ] [25 15 0
133428 15+420) |61 35|
AB—I 215 3 B Ix542x2 1x3+2x4
13 4|2 4] |3x5+4x2 3x3+4x4
5+4  3+8 9 11 .
= =" | (i1)
15+8 9+16 23 25
AC = 1 2(6 2 B Ix6+2x5 1Ix2+2x1
13 4|5 1| [36+4x5 3x2+4x1

6+10 2+2 16 4
= | (111)
{18+20 6+4} {38 10}

Form (ii) and (iii),

9 11 16 4 9+16 11+4
AB+AC = + =

23 25| |38 10 23+38 25+10

3 25 15 )
= 61 350 (1v)

\ Matrices

.. Form (i) and (iv)
A(B+C)=A4B+ AC

Practice:
Verify that

(A+B)C=AC+BC

2.4.5 Multiplicative identity of a matrix

Let we have a matrix / and a matrix 4. Ifthese two
matrices are so related to each other such that

IA= Al = A i.e.,the multiplication of / with 4 or
A with I doesn't change the value of A4 then /is
called the identity matrix of 4. For example:

1 2 1 0
Let A= and [= then we see that
45 0 1

i ol

__Fxl+0x4 1x2+0x5}

Ox1+1x4 Ox2+1x5
B 1+0 240
l0+4 0+5

1 2
IA:45=A

Therefore, I4A = A

Al is also defined because number of columns
in 4 =2 and number of rows in [ is also 2.

1 0f.
So, [ = 1sa
0 1

1 2
multiplicative identity of 4 = L 5}

Example 2.12:

1 0 9 3
If 7= and A= , then find /4 and
0 1 -1 5

Al .



Solution:

vl ild Y
3 1><9+0><(—4) 1><(—3)+0><5
{0x9+1x(—4) 0x(—3)+1x5}

9 -3
IA= =4
%5
{9 —3}{1 0}
Al =
4 510 1
B 9><l+(—3)+0 9><0+(—3)><1
[(-4)x1+5x0  —4x0+5x1

9 -3
4= =4
-4 5
1 0], e .
So [ = {0 | } is the multiplicative identity of
9 -3
A= .
-1 5

1 0
In fact {0 | } is the multiplicative identity of the

Hence, IA=AI= A

system of all 2 by 2 square matrices.

1 00
Similarly |0 1 0] is the multiplicative identity of
0 01

the system of all 3 by 3 square matrices.
2.4.6 Transpose of a matrix

A matrix which is obtained by interchanging all the
rows and columns of a given matrix is called its

transpose. The transpose of matrix 4 is written A4'.

Example 2.13:
3 5

If A= , then A'={4 4
2 6

56

2.4.7 Verification of the result (AB) =B'A’
For verifying the result (AB) = B'A" it is necessary

3 2

that must exists i.e. 4 & B are conformable for
multiplication. This is possible only, when number of

columns in 4 must be equal to the number of rows in
B. Now we choose matrices of suitable order/orders
so that their multiplication becomes possible and then

try to verity the above law, (AB) = B'A’ that is, the

transpose of the product of matrices is equal to the
product of their transposes but in the reverse order.

Example 2.14:

3 -1 2 -5
Let A= ,B= , show that
1 4 6 -7

(AB) =B'A'.

Solution:

oL L%
{?»( 2+(-2)x6 3x(—5)+(—2)(—7)}

1x2+4x6  1x(=5)+4x(-7)
[6=12 -15+14] [-6 -1
12+24 -5-28 | |26 -33

26 (|3 1
B'A' =
e

2x3+6x(-2)  2x1+6x4 }
| 5x3+(=7)(=2) (=5)x1+(-7)x4

[6-12 2+24 -6 26 (i)
= = | e 11
-15+14 -5-28] |-1 -33

Form (i) and (ii) we have (AB) =B'A’

@— Skill 2.4

<> Matrix Operations: Familiarity with the rules and
principles for performing multiplication .

Exercise 2.4

1. Show that which of the following matrices are
conformable for multiplication.

ok

e[ 1
iii) =l 5

ii) Bz[p q]

iv) D=[p r s]

Matrices /



3.

4 1 1 -1 3 4 =2
A: ’B: ,C: ,D: 1
31 -3 4 1 2 S

10.

i) Is it possible to find AB? ii) Is it possible to
find BA? iii) Find the possible
product/products.

Given that

[SSHN )

Find i) AB andii) CD .
2 1
L op . .
3 0|and B= 5 1 .i) Find 4B.
-1 4
ii) Does BA exist?

Let A=

11 0 1
If A= ,B= , then show that
00 0 0
AB # BA .
1 1
If A= , then find Ax 4.
0 0
2 3 1 -1
If A= B= .Is AB=BA.
| 2 ~1 2 4
-1 3 1
If A= l},Bz[l —2],C=[1 2},thenﬁnd

i) (4B)C and 4(BC).
ii) Determine whether (AB )C = A(BC ) .

iii) Interpret which law of multiplication this
result shows?

Verify that A(B+C)=AB+ AC for the

following matrices.
. 1 2 1 0 3 -1
i) A= ,B= C=
3 -1 0 2 0 2
3 -1 1 —1]
ii) A= B= ,C=
0o 2 2 1|
1 0 5 -3 -7 3] .
Let I = A= ,B= Find
0 1 4 6 12 8

i) AI i) BI

\ Matrices

11. Prove that
i)A=[3 2 1],B=[—3 4 2],

(A+B)=A+B and (A-B) =A'-B'

. {7 —3} {1 1}
ii) C= ,D= ,
2 -1 2 2

(C+D) =C'+D' and (C-D) =C' - D'

2 5 -1 1
12.0) If 4= ,B= , show that
-3 4 2 3

(AB)'=B'A’
a b t
i) If c{ },showthat(C’) =C
c d
1 1 b7
iii) If 4= ,B=|-8 4], show that
2 06
0 1
(AB) = B'A

v

Student Learning QOutcomes —@

<> Evaluate the determinant and inverse of a matrix of
order 2 x 2.

p2 3 MULTIPLICATIVE

E’;@!

INVERSE OF A MATRIX

Similar to finding the reciprocal of a number,
matrices also have a concept of a multiplicative
inverse. However, unlike simple division, matrices
follow a specific procedure to determine their inverse
due to the absence of conventional division in matrix
operations. Unveiling this unique approach allows us
to unlock new possibilities in matrix algebra

2.5.1 Determinant of a square matrix

With every square matrix A, a unique real number is
associated which is called the determinant of A4
denoted by |A| or det 4 and is given by a definite rule.

. a b
Thus if4 =
us i L J

b
4. 5

o3y =ad — bc

},then|A|:

Thus the determinant of a 2-by-2 matrix is obtained

by multiplying entries on the main diagonal and



subtracting from it the product of entries lying on the
secondary diagonal.

Example 2.15:

Find the determinant of the matrix

7 5
A=
{17 —12}

Solution:
. 7 5
Given 4 =
7 -12
7 5
~ 4= =7x(-12)-5x7=-84-35=-119
7 -12

2.5.2 Singular and non-singular matrices

A square matrix 4 is called singular if |[A| = 0 and
non-singular if |4| # 0.

Example 2.16:

4
Check whether 4= {

Solution:

If A= {_42 _ﬂ , then
NECUNEEIREr

4
[4]=
-2 1
Hence A4 is a singular matrix.

Example 2.17:

-4 2
If P= { 3 7} , check whether P is a singular or

non-singular matrix.

Solution:
-4 2 -4 2
Pz{ } then|P|=‘ ‘
3 -7 3 -7
=(-4)x(-7)-(3)x(2)
=28-6=22#0

Since |P| # 0, therefore P is non-singular matrix.

}is a singular matrix or not.

2.5.3 Adjoint of a matrix

b
The adjoint of a square matrix 4= {a d} is
c

d -b
denoted by adj4 and defined as adjA = { } .
a

—c
That is, change the places of a and d with each
other and change the signs of b and c.

Example 2.18:

Find adjoint of the following matrices.

o [3 2 L[4 2
l)_14 ")_—31

Solution:

3 -2
i) A= , then
1 4

2.5.4 Multiplicative inverse of a Matrix

Let A4 be a non-singular square matrix. If there exists
another non-singular matrix B  such that
AB = BA=1 is an identity matrix, then B is said to
be the multiplicative inverse of 4. we denote the

inverse of 4 b.y A”'. Hence B=A4"".
Example 2.19:

3 2
Show that L 3} is the multiplicative inverse of
3 2
-4 3
Solution:  Jer 4= 302 B= 32
4 3 -4 3

AB:F 2}{3 —2}:{3x3+2(—4) 3(—2)+2x3}

4 3]|-4 3| |4x3+3(-4) 4(-2)+3x3

Matrices / |



_|[ 9-8 —6+6]_[1 O|_,
Cl12-12 -8+9 |0 1|
3 23 2] | (3x3)+(-2)4 3x2+(-2)3

quz{_4 3}{4 3}:¢k—4x3)+(3x4) (—4)2+3x3}
| 9-8 —6+6| |1 0 _
| -12412 849 |0 1|

Since AB =1 = BA, therefore A is the inverse of B.

Letd=|“ O then ddj(4)=| “
etd=| = | then li(A4)=

_b}and |4|=ad - be.
—C da

1

4]

To find A", we use the formula A™'=— Adj A.

1 d -b
“ad-bel—c a

2
Find the inverse of 4= { 3

Example 2.20:
1 : .
1 } , using the adjoint

method.
-2

Solution: 4= -1
3 4
|d|=-2x4-3(-1)=—8+3=-5
Since |A| # 0, therefore A4 is non-singular, so we

can find 47",
A= iAa’jA

4]

4 1
Now AdjA= { 3 2} , putting it in equation (1).

4 -1
RS 4l ]s s
—5/=3 -2 3 2

5 5

2.5.6 Verification of the result A4 =1=A"A4

4o
agt |72 s s
3 o4)l3 2

5 5

\ Matrices

8§ 3 2 2
5 s 5 5| [1o ,
S5 55 e )
-12 12 -3 8] [0 1
5 5 55
4
S5 5 [-2 -1

A*lA_S 5
3 2|3 4
5 5

8 3 4 4
s 5 & s 1 0 ..
A= 0 3 S S T (i1)
-6 6 -3 8 0 1
5.5 55
Thus, from (1) and (ii)
A4 =1=4"A.

2.5.7 Verification of the result (4B)" =B~'4™

The above equation is not true for all types of
matrices, but it is true only if 4 and B are non-singular
square matrices of the same order. In such a case, the
above equation states that the inverse of the product
matrix is equal to the product of inverses but taken in
the reverse order.

Now we verify the above result by taking suitable
matrices.
Example 2.21:

-2 1 21
Let 4= and B =
1 1 3 2

Solution:

B - =2 12 17 [-2x2+1x3 -2x1+1x2
11 1|3 2] [1x2+1x3

Ix1+1x2



:[_4+3 _2+2}:{_1 O} 2><—l+(—1)><l le*'(_l)xg
3 3 3 3

2+3  1+2 5 3 _
-1 0 1 1 1 2
det(AB)z‘ 5 3‘ =(-1)x(3)—(0)x(5) ==3=0 —3x [—§j+ 2x o X+ 2xT
<. (AB ) 'exists and( 4B )" =;Adj(AB) 2 v 2 20 =2-1
det( AB) gigio| 33 3 3|_| 3
2 4 3+2 3+4
. -1 0 30 1+=  —Ix—| | =—=
Since, AB = ; =Adj( AB)= s 3 3 3 3
T -3
3|-5 -1 Tlsoa| 2t
i 3 3 3 3
——X 3 _gx 0 —1 0 .
_ |5 q| (1) o -1 0
—ox =5 —=x(-1) 3 3 ie,B A4 = 51| (i1)
3 3 3 3
Next,
Comparing (i) and (ii) we get (AB) ' =B~'4™".
-2 1 -2 1
A= = de(a)=| T =(-2)()-(1)(1)
@— Skill 2.5
detA=-2—-1=-3%0 <> Calculating Determinants and Inverses:
1 1 Proficiency in determining the determinant
Ad]( A) — - and inverse of 2x2 matrices and interpreting
-1. -2 their significance.
1 -1
A= agi(a)=-L .
detA 3[-1 -2 Exercise 2.5
1 11 . . . .
——x1 —gx (—1) 7 3 1. Find the determinant of following matrices and
e, A" = = evaluate them.
——x(=1) —lx(—Z) 12 5 6 4 -2
3 3 3 3 i) A= ii) B=
-4 1 5 13

. 2.1
Agaln,B:{ } and |B|=‘ =2(2)-1(3), 11 7 5 6
3 2 iii)c:|: } iv)D:{ }
8 -9
so B exists.

2p 3¢ . 1 0
. i, . : 2 -~ V) E= rooo—=s v) F= 0 1
B =mAdj(B). But Adj(B) = A
1 2
T2 -1 (2 -1 vil) G = {3 2} viii) H = [g 2}
B'== =
1 25 o)
11 2. Find which of the following matrices are singular
R 2 1|73 3 and which are nonsingular.
R i) A= ii) B=
3 3 2 1 -2 4

m Matrices /



3a -2b -3 6
2a b 2 4
3. Find the adjoint of the following matrices.

NI I
VA=l WE=

{2 —4} ) {—3 6 }
iii) C = iv) D=
3 1 2 -4

4. Find the multiplicative inverses of the following
matrices if they exist.

LR
) 131

iii)C:[ iv)D{

i) AB ii) B4 iii) A 'andB~'
then show that (AB)"' =B '4A'and(BA)" =4"'B"

0 -1 2
6. If 4= ,B=
2 1 1

(AB)"'=B"'A'and (BA)'= A”'B""

3
0} , then show that

/4

Student Learning Outcomes

<$-  Solve the simultaneous linear equations in two
variables using matrix inversion method and
Cramer’s rule

2.6 SOLUTION OF SIMULTANEOUS LINEAR

EQUATIONS

2.6.1 Matrix Inversion Method
System of two linear equations in variable x and y

in general form is shown below.

ax + by /T (l)
ex+dy=mn--- (1)
This can be written as, AX=B....... (1i1)

where 4 = a b X=|"| andB= m.
c d|’ v’ n

\ Matrices

So, the system of equations in matrix form is,

a b||x|_|m

c d||y]| |n
If |4]# 0, we can find 4™'. Multiplying both sides
of equation (iii) by 47", we get
A'(AX)=A'B=(4"'4)X=4"B

—~IX=A'B=X=A4A'B....... (iv)
From equation (iv),

Ny |l|{i

P 1ld -b x_ldmbn
’ _m - a _|A| —cm+ an
dm—bn —cm+ an
> X = s y =
ad —bc ad —bc
Hence, the solution of given system of equations is
) dm— bn _ —cm+an
ad —bc’ ad —bc

This method is known as matrix inversion method.
It may be remembered that if lA| =0,4"" does not

exist. Hence,in such a case solution set of the
equations cannot be found.

Example 2.22:

Ed
Solve the following system
of equations with the help of matrices.

Solution:
x=3y=0,2x+y=7

These equations can be written in the form of
matrices as

T
el

|4|=1x1-2(-3)-1+6=7=0.

1
Let 4=
,

Hence,A ™' exists. By using formula, we get

oA
71-2 1

o sx=smxws=[ -1 ]



X 11Ix0+3x7 1121 3
= = — = — =

v 7| 2x0+1x7| 7|7 1
Example 2.23: '

Is the following system of equations solvable?

3x-6y=9,2x-4y=-3

Solution:
3 -6
Here A= ,
Bl
3 -6
then | 4|= 5 4‘:3(—4)—2(—6)=—12+12=0

Hence the given equations are non-solvable.
2.6.2 Cramer's Rule

We can easily solve simultaneous equations by

applying Cramer's rule. The method is explained as:

Let the system of equations be

ax+by=m
cx+dy=n
In terms of matrices, we write these equations as;

R HEE AP
s a1 (a0

|A| =ad —-bc
We replace the coefficients of x in A (thatis a,c )

by m,n of B and denote as 4, .

m b
AX:[ },AV =md —nb,
n d ’
A| md-nb
theg— =——
b |A| ad —bc

Likewise, for y, we replace the coefficients y in 4
(thatis b,d )by m,n of B and denoteitby 4, .

a m
A = where‘A ‘=an—mn,
Y c n Y

A

y

an—cm
then y=+—=

|A ad —bc

The method explained above is known as Cramer's
Rule.

Example 2.24:

Solve the following system of equations by using
Cramer's rule.

Solution: x=2y=13x+ys10

In terms of matrices we can write the above system

R P
W

|d|=1x1=3(-2)=1+6=7%0

1
where 4= [
3

Replacing the coefficients of x in A (thatis 1,3 ) by
1,10 of B to find 4, .

I -2
4, { },giving 4= 1x1-10(-2)

10 1
=1+20=21
4| 21
A7

For A, replace the coefficients of y in 4 (thatis
-2,1 )by 1,10 of B.

1 1
Then 4 = , givin
’ {3 10} Sivine

|4,|=1x10-3(1)=10-3=7

Hence the solution set z{(3,1)}

”

Student Learning Outcomes —@

<> Explain, with examples, how mathematics plays a key
role in the development of new scientific theories and
technologies. [e.g, Mathematical models and simulations
are used to design and optimize new materials and drugs, and

to understand the behavior of complex systems such as the
human brain.]

Matrices /



<> Apply concepts of matrices to real world problems
(such as engineering, economics,
computer graphics, and physics)

2.6.3 Real life problems leading to simultaneous
equations

Many real life problems require for their solution the
finding of two unknown quantities. The general
method of solution is similar to that used when there
is one unknown, but with the important difference
that when there are two unknowns to be found, two
equations must be formed form the data, which can
be solved by either matrix inversion method or
Cramer's rule as shown in the following examples.

Example 2.25:

My friend asked me this question. There are two
numbers such that the sum of the first and three
times the second is 53, while the difference between

4 times the first and twice the second is 2. Can you
help me out in finding the numbers?

Solution:
Let x= one number and y = the second.

Then from the first set of facts

x+3y=353
From the second set of facts

4x-2y=2
These equations can be written in the form of
matrices as:

gk
N

Now |4|=1x(-2)-3x4=-2-12=-14=0. Hence

Let A=

A" exists. By using formula we get

o[22 -3
14| -4 1] 14]-4 1

B . X __1 -2 =31/53
Now AX=B= A4 B> =——
y 14| -4 112

\ Matrices

N {x} _ _L{—2x 53+(-3)x2]

y 14 —4x53+1x2 |
_1[-106-6] 1 [-112] [8]
14| -212+2]  14|-210] |15]

wx=8,y=15

Therefore, the numbers are 8 and 15 .

Example 2.26:

The cost of 1 rubber and 7 sharpeners are 8 rupees,
while that of 3 rubbers and 1 sharpener are 3 rupees.
What are the prices of a rubber and a sharpener
respectively?

Solution:

Let x = rubber price.

y = sharpener price.

Then from the first set of facts
x+7y=15

From the second,
3x+y=5

These equations can be written in the form of
matrices as:

T
ol el

Now D =|d|=1x1-3%(7)=1-21=-20=0.

Let

tere 4 <115 7] i
ere A = 5 , glving
D, =|4,|=15x1-5(7)=15-35=-20

D _-20_,

D 20

115
A:{ 5},givingD2=‘Ay‘=1x5—3(15)=5—45

Y
=40

Lx=lLy=2



- D, -4
Thus price of one rubber = .. y=—2= —40 =
D 20
rupee and price of one sharpener =2 rupees.

21

z
@— Skill 2.6
<> Capability to use matrix inversion and Cramer’s rule

to find solutions to systems of linear
equations Solving Linear Systems
Exercise 2.6
1. Solve the following system of linear equations

using inversion method.

i) 2x+3y=-1 ; x—-y=2
ii) x+2y=-13 ;3x+6y=11
iii) x+2y=1 ;2x+3y:%

iv) x=2y—-1=0; 2x+y+3=0

2. Solve the following system of linear equations
using Cramer's Rule.
i) x—2y=5
i) 4x+3y=-2 ; x-2y=5

;2x—y=6

iii) Sx+7y=3 ;3x+y=5

3. Amjad thought of two numbers whose sum is 12
and whose difference is 4 . Find the numbers.

4. The length of a rectangular playground is twice
its width. The perimeter is 30. Find its
dimensions.

5. 3 bags and 4 pens together cost 257 rupees
whereas 4 bags and 3 pens together cost 324
rupees. Find the cost of a bag and 10 pens.

6. Iftwice the son's age in years is added to the
father's age, the sum is 70 . But if the father's age
is added to the son's age, the sum is 95 . Find the
ages of father and son.

APPLIGATIONS IN DEVELOPMENT OF

NEW SCIENTIFIC THEORIES AND

TECHNOLOGIES IN REAL WORLD

Matrices play a vital role in modeling dynamic
systems and analyzing large data sets. They simplify
complex differential equations into a manageable
form for simulations in engineering, helping predict
system behavior. In research and pharmaceuticals,

matrices are used to process and interpret
experimental data, aiding in material development

and drug efficacy studies.

Matrices are key tools in various fields, essential for
solving real world problems. In engineering, they
help design structures and analyze safety. In
economics, they model market dynamics and
equilibrium. In computer graphics, matrices facilitate
2D and 3D transformations, crucial for rendering
images and scenes. They also play a significant role
in 1mage processing tasks like blurring and
sharpening.

Example 2.27:

Consider a mass-spring system with a single degree
of freedom described by the following matrix
equation:

X, =A4X,
Here, X, represents the state of system of at time
t,X, represents the initial state of the system and the

A 1s a matrix that represents the system's dynamics.
Both X, and X, describe the state of the system by

containing the values for position and velocity of the
system at a particular time. The matrix 4 describes
the system's dynamics by containing the physical
constants for the system such as the stiffness co-
efficient.

Now calculate the initial state of the system (X, ) if:

Solution:

k = stiffness coefficient =2
¢ = damping coefficient = 0.5

This problem can be solved using the matrix
inversion method:

X, = 4X,
A'X =X,

Matrices /



By using the values of the constants, we have the A

matrix as: 0 1
A=
-2 -0.5

To find A" we need to calculate both the
determinant and Adjoint of A:

A5 g =(0)-05)-(2)0)=2
Adez[—o.s
Uses 2

In 1939, Britain enlisted chess
players, mathematicians, and
logicians to decipher Nazi codes
during World War II. Over 10,000
people collaborated, successfully
breaking the code within a year. This
section explores how matrices and
their inverses played a crucial role in
concealing and revealing hidden messages

Now the inverse can be calculated as:

4" =L agja

gl
PRt -0.5 -1
21 2 0

e R}
14 0

Finally, we can now calculate X, by matrix

multiplication: A'X, =X,
Ao
oo |

N

Photographs sent back from
space use matrices with
thousands of pixels. Each pixel
is assigned a number from 0 to
63 representing its color—O for
pure white and 63 for pure
black. In the image of Saturn shown here, matrix operations
provide false colors that emphasize the banding of the
planet's upper atmosphere

\ Matrices

Example 2.28:

A chemical reaction involving two reactants and one

product is described by the matrix equation:
C,=KC

Where, C,, is a column matrix representing the

concentrations of reactants and products at

equilibrium, K is a matrix describing the reaction

rate constants and C is a column matrix

representing the initial concentrations of reactants

and products.
Now calculate the value of C,, if:

Solution: C = ;
2
-0.1 0 0.2
K=/ 0 01 0
0 03 -02

This problem can be simply solved by matrix
multiplication:

c,=KC,
0.1 0 027
c,=| 0 01 0 ]3
0 03 -02]2

(0)(1)+(0:3)(3)+(-02)(2)
0.3
C,=|03
0.5

Example 2.29:
A bridge is subjected to a force of 1000 Newton.
The stress in the bridge can be calculated using the
following matrix equation:

S = Ax Bx force

1000 500 } . {2000}

where 4=
500 2000 3000

( A is a matrix representing the properties of the
bridge, B represent he force applied to the bridge
and force is a scalar value representing the
magnitude of the force and § is matrix representing

the stress in a bridge)



Solution: § - 4x Bx force

_[1000 500 (2000
1 500 2000 || 3000

o 1000 500 ][2000x 1000
“ 1500 2000 || 3000x 1000

:|><1000

| 1000 500 (| 2000000
| 500 2000 || 3000000

- {1000(2000000) + 500(3000000)}
500(2000000) +2000( 3000000)
3500000000
B {9500000000}
So, the stress in a bridge is given by matrix S

Example 2.30:

Consider a network of parallel resistors described by
the system of equations: 3x—2y=6;2x+4y =8

Represent these relationships in a matrix and solve
for x and jy.

Solution:

This problem can be solved using the matrix
inversion method. The matrix form of this system is

AX =B,
-2 X 6
X = and B =
4} u M

The above equation can be written as

3
where 4= {
2

X=A4"B
XzAdexB
|4

Firstly, we need to calculate both the determinant of

3 -2

2 4
[4]=(3)(4)-(=2)(2)
|4|=12+4
|4|=16

The adjoint of A will be:

4 2
P

[4]=

-2 3

Now values of adjoint of 4 and determinant of A4 in
above equation

4 2
= Adi4 BX_Lz 31{6}
|4| 16 8
o] <[] [

S

So, the solution to the system of equations is
x=5/2and y=3/4

Example 2.31:

Consider a 2D point represented by the column

X
vector
Yy

by a factor of 2 in the x -direction and 3 in the y-

direction is:
20
T=

a) Apply the transformation matrix 7' to the point

|3

b) What is the result of applying the transformation

} . The transformation matrix for scaling

T twice?
Solution:

a) To apply the transformation matrix to the point,
simply multiply the matrix 7' by the column vector
representing the point:

e [ 3
{2(4)+0(2)}

0(4)+3(2)
b) To apply the transformation matrix 7" twice to the

4
point 4 = {2} , simply perform the multiplication as

Matrices /
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@— Skill 2.7
<> Explaining Mathematical Applications:

<> Practical Application of Matrix Concepts:

Exercise 2.7

Solve the following problems

1.

In material design, a composite's properties are
modeled by M, = CM, , where M, represents

tested properties, M, initial properties, and C

describes the composite's composition and

. . 0.5 0.2
processing. Given that C = and
0.3 0.8

t

_[1500
| 800

initial material properties.

} after a series of tests, calculate the

2. Population growth of prey and predators is

represented as P=M P , where P, is the

t
population at time t, P, is the initial population,
and M describes interactions between them.

) 1.2 -0.5 100
Given that M = and P = ,
0.3 0.1 20

calculate the initial populations.
. Genetic traits in a species are modeled by G

parent
= MxG

offspring where G, and G are

offspring parent
traits of offspring and parents, respectively, and
M represents the inheritance matrix. Given that

0 -3 1
M = .and G, = calculate the
9 15 ! 0

\ Matrices

Ability to articulate and exemplify the role of mathematics in the development of new scientific theories and technologies.

Aptitude for applying matrix theory to solve real-world problems in various professional and academic fields

genetic traits of the offspring represented by
G

offspring. *

. Temperature distribution in a composite rod is

given by 7 =kT,, with 7, as temperatures at
different points, 7, as initial temperatures, and k
as the thermal conductivity matrix Given that

k= {O' oo } and T = FO} calculate the

0 022 35

initial temperatures.

In biomechanics, joint movement is described by

S, =1 §,, where S, is the joint angles at various

times, S, the initial angles, and J the matrix for

joint kinematics.

. 0.5 0 30
Given that J = and S, =
0 0.717 45

calculate the initial joint angles.

A rectangular building with a length of 20 meters
and a width of 30 meters is subjected to a force of
5000 Newton on its roof. The stress in the

building can be calculated using the following
matrix equation:

Stress = Ax Bx F



500 250 100

(Matrix A represents building properties, B the
applied force, and 'force' is its scalar magnitude.)

100 750 350
Where,A:{ }and,B:{ }

A bridge is designed with the following load-
bearing matrix:

75 200
A=
175 50

} If the number of cars on the

25
bridge is given by the matrix car = [10} find the

stress on the bridge. [Hint: use the formula,
stress = Ax cars |

. A suspension bridge is designed with the load-

, ) 23 75
bearing matrix, 4=
65 15

vehicles in a bridge is given by the matrix,

} . If the numbers of

B= {x} and the stress in a bridge is given by a
y

90
matrix, S = {35} then find the number of cars in

bridge
Express the system where twice the cars plus
pedestrians equals 8, and four times the cars

minus twice the pedestrians equals 10, in a matrix.
Use matrix inversion to find the number of cars

and pedestrians, and consider a related load-
50 100
135 25|

bearing matrix for a bridge. 4= {
then find the stress on a bridge.

Review Exercise 2

Choose.the correct answer in
eachsf the following problems.

ol ol

(a) An identity matrix w.r.t multiplication

(b) A column matrix
(¢) An identity matrix w.r.t addition
(d) A null matrix

. |4 0 |,
(ii) The matrix 1s
0 -12
(a) A scalar matrix
(b) 2x 3 matrix

(c) Adiagonal matrix
(d) None of these

-1 =2
(iii) If 4 ={ 3 1 } then adjA is equal to

-1 =2 1 2
(a) } (b) }

13 1 -3 -1
-1 2 ! (122
© 131 @ 13 1
W) IF A=| 20O then A" 1
(iv) Shs Al en equals
4 3 (4 3]
@[ 2} R
2 3 4 3]
. L3 —4} @15 5

(v) For what value of d is the 2x 2 matrix

5 1.5 . .
NOT invertible?

2 d
(a) -0.6 (b) 0
(¢) 0.6 d)3

(vi) Suppose 4 and B are 2x 5 then A+ B ?
(b) 10x10
(d) 7x7

(a) 2x5
(c) 7x1

. 1 2],
(vii) Inverse of is
0 1

1 2 b 1 2]
(@) 0 1 ()_0 1|
-1 2 4 1 2]
(c) 01 ()_0 )

Matrices /



(viii) The determinant of the matrix { 49 ;l}is

(a) 17 (b) 1
(c)-1 (d)-17
, [x—l 4} {0 4}
2. Find x and y =
y+3 =7| |2 -7

-6 5 8
3. Find the product if possible. | =5 { 0 4 J
3

6 -3
4. Find the inverse of the matrix 4= L 2}

5. Solve the system 2x+5y=9 ; 5x—2y=8§

6. Qasim sold 3 small and 14 large orange boxes for
Rs.203, and Farzana sold 11 small and 11 large
boxes for Rs.220. Calculate the price per small and
large box.

7. You bought apples, bananas, and oranges. Apples
cost Rs. 20 each with a tax rate of 5%, bananas cost

Rs. 15 each with a tax rate of 4%, and oranges cost
Rs. 10 each with a tax rate of 3%. Calculate the total
cost for each type of fruit after adding tax.

8. For a week, you consumed 400 calories for
breakfast, 600 calories for lunch, and 450 calories
for dinner each day. Your daily calorie limit is 2000
calories, with breakfast accounting for 20%, lunch
for 30%, and dinner for 25% of the total. Calculate
your daily calorie intake.

9. In a classroom, there are three students, and each
student has grades in four subjects: Math, English,
Science, and History. Here are the grades (out of
100):

Student 1: [85, 90, 92, 88]
Student 2: [78, 86, 88, 90]

Student 3: [92, 94, 90, 87] The weight of each
subject in the final grade is: Math (20%), English
(25%), Science (30%), and History (25%). Calculate
I \ Matrices

the final grades for each student.

SUMMARY

1. A matrix is a rectangular array of real
numbers enclosed in brackets.

2. The rows of a matrix run horizontally, and
the columns of a matrix run vertically.

3. A matrix with m rows and n columns has
order mxn (read" m by n ").

4. Each number in a matrix is called an element
or entry of the matrix.

5. Two matrices of the same order are equal if
their corresponding elements are equal.

6. A matrix is said to be a row matrix if it has
only one row.

7. <A matrix is said to be a column matrix if it
has only one column.

8. A matrix in which the number of rows is
equal to the number of columns is called a
square matrix.

9. A matrix in which the number of rows is not
equal to the number of columns is called a
rectangular matrix.

10. A matrix is said to be a zero matrix or null
matrix if all its elements are zero.

11. If all the elements of a square matrix except
the diagonal elements are zero, then the
matrix is called a diagonal matrix.

12. A diagonal matrix, whose all the diagonal
elements are equal, is called a scalar matrix.

13. A scalar matrix of order »n in which each
diagonal element is 1 (unity) is called an
identity matrix of order 7 .

14. A matrix obtained by interchanging rows
and columns of a matrix A is called the
transpose of the matrix 4 and is denoted by
A"

15. If a square matrix 4= A", then A4 is called a
symmetric matrix.



16. A square matrix A is said to be skew-

symmetric if 4'=-4.
17. (A+B) =A'+B,(A-B) =4 —B'.

18. Two matrices are said to be conformable for
addition/subtraction if they are of the same
order.

19. The null matrix is the additive identity for
the matrix addition.

20. If A4 1s a matrix then —A4 1s the additive
inverse of. 4.

21. Two matrices A and B are said to be
conformable for multiplication AB, only
when the number of columns of matrix 4 is
equal to the number of rows of matrix B.

A,,xB, =A4B

mxn

22.If A,B and C are three matrices then
A(BC)=(A4B)C . This property is called
associative law of matrices w.r.t
multiplication.

23. Commutative law of multiplication does not
hold in matrices in general.

24. Let A,B and C be three matrices, then
@) A(B+C)= 4B+ AC
(Left Distributive Law)
(i) (4+B)C=4C+BC

(Right Distributive Law)
These are called distributive laws under

multiplication over addition.

25. With every square matrix 4, a unique real
number is associated which is called the
determinant of A denoted by | 4| or det A.

a b
=ad-bc.
c d

a
26. If Az{
c

b
} , then |A| =
d

27. A square matrix A is called singular if |A| =0

and non-singular if |A| #0.

b
28. The adjoint of a square matrix 4= {a d} is
c

denoted by adjA and defined as

, {d —b}
adjA = .

—C a

29.If A and B are square matrices such that
AB = BA=1 where [ is the identity matrix.
Then B is called the inverse of A4, denoted as

B=A".

AA ' =T=A4"4
1
A =—adid
P
(AB)' =B'4"

Matrices /
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